已知橢圓
的中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線![]()
與橢圓
交于
兩點(diǎn),是否存在實(shí)數(shù)
,使
成立?若存在,求
的值;若不存在,請(qǐng)說明理由.
(Ⅰ)
,(Ⅱ)不存在.
解析試題分析:(Ⅰ)求橢圓標(biāo)準(zhǔn)方程,關(guān)鍵利用待定系數(shù)法求出a,b. 由..及
,解得
,
.所以
.所以橢圓
的標(biāo)準(zhǔn)方程是
.(Ⅱ)存在性問題,一般從假設(shè)存在出發(fā),建立等量關(guān)系,有解就存在,否則不存在. 條件
的實(shí)質(zhì)是垂直關(guān)系,即
.所以
.
,![]()
把
代入橢圓C:
中,整理得
.整理得
,矛盾.
(Ⅰ)設(shè)橢圓
的方程為![]()
,半焦距為
.
依題意
解得
,
,所以
.
所以橢圓
的標(biāo)準(zhǔn)方程是
. .4分
(Ⅱ)不存在實(shí)數(shù)
,使
,證明如下:
把
代入橢圓C:
中,整理得
.
由于直線
恒過橢圓內(nèi)定點(diǎn)
,所以判別式
.
設(shè)
,則
,
.
依題意,若
,平方得
.
即
,
整理得
,
所以![]()
![]()
,
整理得
,矛盾.
所以不存在實(shí)數(shù)
,使
. .14分
考點(diǎn):橢圓標(biāo)準(zhǔn)方程,直線與橢圓位置關(guān)系
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
過拋物線C:
上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),且直線AB過點(diǎn)(0,-1),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點(diǎn)
,且離心率
.
(1)求橢圓C的方程;
(2)已知過點(diǎn)
的直線
與該橢圓相交于A、B兩點(diǎn),試問:在直線
上是否存在點(diǎn)P,使得
是正三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
是拋物線
上不同的兩點(diǎn),點(diǎn)
在拋物線
的準(zhǔn)線
上,且焦點(diǎn)
到直線
的距離為
.
(I)求拋物線
的方程;
(2)現(xiàn)給出以下三個(gè)論斷:①直線
過焦點(diǎn)
;②直線
過原點(diǎn)
;③直線
平行
軸.
請(qǐng)你以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的焦點(diǎn)為
,點(diǎn)
是橢圓
上的一點(diǎn),
與
軸的交點(diǎn)
恰為
的中點(diǎn),
.
(1)求橢圓
的方程;
(2)若點(diǎn)
為橢圓的右頂點(diǎn),過焦點(diǎn)
的直線與橢圓
交于不同的兩點(diǎn)
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓
.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓
.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)分別為
,且點(diǎn)
在橢圓C上,又
.
(1)求焦點(diǎn)F2的軌跡
的方程;
(2)若直線
與曲線
交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的準(zhǔn)線與x軸交于點(diǎn)M,過點(diǎn)M作圓
的兩條切線,切點(diǎn)為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com