過拋物線C:
上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),且直線AB過點(diǎn)(0,-1),求
的面積.
(1)y2=8x,(2,4);(2)
.
解析試題分析:本題主要考查拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、韋達(dá)定理、點(diǎn)到直線的距離、三角形面積公式等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,由題意結(jié)合拋物線圖象得到M點(diǎn)坐標(biāo),代入拋物線方程中,解出P的值,從而得到拋物線的標(biāo)準(zhǔn)方程及M點(diǎn)坐標(biāo);第二問,設(shè)出A,B點(diǎn)坐標(biāo),利用M點(diǎn),分別得到直線MA和直線MB的斜率,因?yàn)閮芍本傾斜角互補(bǔ),所以兩直線的斜率相加為0,整理得到y(tǒng)1+y2=-8,代入到
中得到直線AB的斜率,于是得到直線AB的方程,令直線與拋物線聯(lián)立,得到
,而
,
,而
用兩點(diǎn)間距離公式轉(zhuǎn)化,d是M到直線AB的距離,從而得到
的面積.
(1)拋物線C的準(zhǔn)線x=-
,依題意M(4-
,4),
則42=2p(4-
),解得p=4.
故拋物線C的方程為y2=8x,點(diǎn)M的坐標(biāo)為(2,4), 3分
(2)設(shè)
.
直線MA的斜率
,同理直線MB的斜率
.
由題設(shè)有
,整理得y1+y2=-8.
直線AB的斜率
. 6分
于是直線AB的方程為y=-x-1.
由
得y2+8y+8=0.
|y1-y2|=
=
,
于是|AB|=
|y1-y2|=8. 10分
點(diǎn)M到直線AB的距離
,
則△MAB的面積S=
|AB|·d=
. 12分
考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、韋達(dá)定理、點(diǎn)到直線的距離、三角形面積公式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知點(diǎn)A
,橢圓E:
的離心率為
;F是橢圓E的右焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn)
(I)求E的方程;
(II)設(shè)過點(diǎn)A的動(dòng)直線
與E 相交于P,Q兩點(diǎn)。當(dāng)
的面積最大時(shí),求
的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線
的焦點(diǎn)為
,點(diǎn)
,線段
的中點(diǎn)在拋物線上.設(shè)動(dòng)直線
與拋物線相切于點(diǎn)
,且與拋物線的準(zhǔn)線相交于點(diǎn)
,以
為直徑的圓記為圓
.
(1)求
的值;
(2)證明:圓
與
軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn)
,使得圓
恒過點(diǎn)
?若存在,求出
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的右焦點(diǎn)為
,離心率
,
是橢圓上的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線
與
的斜率乘積
,動(dòng)點(diǎn)
滿足
,(其中實(shí)數(shù)
為常數(shù)).問是否存在兩個(gè)定點(diǎn)
,使得
?若存在,求
的坐標(biāo)及
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•天津)設(shè)橢圓
+
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若直線PF2與圓(x+1)2+
=16相交于M,N兩點(diǎn),且|MN|=
|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的一個(gè)焦點(diǎn)為
,且離心率為
.
(1)求橢圓方程;
(2)過點(diǎn)
且斜率為
的直線與橢圓交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,求△
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的方程;
(2)若過點(diǎn)
(2,0)的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(
為坐標(biāo)原點(diǎn)),當(dāng)
<
時(shí),求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線![]()
與橢圓
交于
兩點(diǎn),是否存在實(shí)數(shù)
,使
成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,
為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與
軸的交點(diǎn)是
.
(1)點(diǎn)
在已知橢圓上,動(dòng)點(diǎn)
滿足
,求動(dòng)點(diǎn)
的軌跡方程;
(2)過橢圓右焦點(diǎn)
的直線與橢圓交于點(diǎn)
,求
的面積的最大值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com