數列{an}滿足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常數.
(1)當a2=-1時,求λ及a3的值.
(2)數列{an}是否可能為等差數列?若可能,求出它的通項公式;若不可能,說明理由.
科目:高中數學 來源: 題型:解答題
已知等差數列{an}的首項為a,公差為d,且方程ax2-3x+2=0的解為1,d.
(1)求{an}的通項公式及前n項和公式;
(2)求數列{3n-1an}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+S2=12,q=
.
(1)求an與bn.
(2)證明:
≤
+
+…+
<
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
各項均為正數的數列{an}滿足an2=4Sn-2an-1(n∈N*),其中Sn為{an}的前n項和.
(1)求a1,a2的值;
(2)求數列{an}的通項公式;
(3)是否存在正整數m、n,使得向量a=(2an+2,m)與向量b=(-an+5,3+an)垂直?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com