如圖1,在直角梯形
中,
,
,且
.
現(xiàn)以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,
為
的中點(diǎn),如圖2.
(1)求證:
∥平面
;
(2)求證:
平面
;
(3)求點(diǎn)
到平面
的距離.
![]()
圖
圖![]()
(1)利用線線平行證明線面平行;(2)利用線線垂直證明線面垂直;(3)利用等體積法求解點(diǎn)到面平面的距離
【解析】
試題分析:
![]()
解:(1)證明:取
中點(diǎn)
,連結(jié)
.
在△
中,
分別為
的中點(diǎn), 所以
∥
,且
.
由已知
∥
,
, 所以
∥
,且
.
3分
所以四邊形
為平行四邊形. 所以
∥
.
4分
又因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060111290471066654/SYS201306011132299606849335_DA.files/image018.png">平面
,且
平面
,所以
∥平面
.
5分
(2)證明:在正方形
中,
.
又因?yàn)槠矫?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060111290471066654/SYS201306011132299606849335_DA.files/image021.png">
平面
,且平面
平面
,
所以
平面
. 所以
.
7分
在直角梯形
中,
,
,可得
.
在△
中,
,
所以
.所以
. 8分
所以
平面
.
10分
(3)解法一:由(2)知,
平面![]()
又因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060111290471066654/SYS201306011132299606849335_DA.files/image038.png">平面
, 所以平面
平面
.
11分
過點(diǎn)
作
的垂線交
于點(diǎn)
,則
平面![]()
所以點(diǎn)
到平面
的距離等于線段
的長度
12分
在直角三角形
中,![]()
所以![]()
所以點(diǎn)
到平面
的距離等于
. 14分
解法二:由(2)知,![]()
所以![]()
12分
又
,設(shè)點(diǎn)
到平面
的距離為![]()
則![]()
, 所以![]()
所以點(diǎn)
到平面
的距離等于
. 14分
考點(diǎn):本題考查了空間中的線面關(guān)系
點(diǎn)評:立體幾何問題主要是探求和證明空間幾何體中的平行和垂直關(guān)系以及空間角、體積等計(jì)算問題.對于平行和垂直問題的證明或探求,其關(guān)鍵是把線線、線面、面面之間的關(guān)系進(jìn)行靈活的轉(zhuǎn)化.在尋找解題思路時(shí),不妨采用分析法,從要求證的結(jié)論逐步逆推到已知條件.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山西省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在直角梯形
中,
,
,
,
. 把
沿對角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
![]()
(1)求證:平面
平面
;
(2)求直線
與平面
所成角的正弦值;
(3)在棱
上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市海淀區(qū)高三5月期末練習(xí)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在直角梯形
中,
,
,
,
. 把
沿對角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
(I)求證:平面
平面
;
(II)求直線
與平面
所成角的正弦值;
(III)在棱
上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三4月模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,
在直角梯形
中,
,
,
,
為線段
的中點(diǎn). 將
沿
折起,使平面![]()
平面
,得到幾何體
,如圖2所示.
(1)求證:
平面
;
(2)求二面角
的余弦值. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年天津市天津一中高三下學(xué)期第五次月考數(shù)學(xué)(理) 題型:解答題
如圖1,在直角梯形
中,
,
把△
沿對角線
折起后如圖2所示(點(diǎn)
記為點(diǎn)
), 點(diǎn)
在平面
上的正投影
落在線段
上, 連接
.
(1) 求直線
與平面
所成的角的大小;
(2) 求二面角
的大小的余弦值.![]()
![]()
圖1 圖2
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com