中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ex+x,對于曲線y=f(x)上橫坐標成等差數列的三個點A,B,C,給出以下判斷:
①△ABC一定是鈍角三角形   
②△ABC可能是直角三角形
③△ABC可能是等腰三角形    
④△ABC不可能是等腰三角形,其中正確的判斷是
①④
①④
分析:由于函數f(x)=ex+x,對于曲線y=f(x)上橫坐標成等差數列的三個點A,B,C,由函數的定義及函數單調性進行判斷即可得出正確選項,對于①正確,由函數的圖象可以得出,角ABC是鈍角,②亦可由此判斷出;③④可由變化率判斷出.
解答:解:由于函數f(x)=ex+x,對于曲線y=f(x)上橫坐標成等差數列的三個點A,B,C,且橫坐標依次增大
由于此函數是一個單調遞增的函數,故由A到B的變化率要小于由B到C的變化率.
可得出∠ABC一定是鈍角故①對,②錯.
由于由A到B的變化率要小于由B到C的變化率,由兩點間距離公式可以得出AB<BC,
故三角形不可能是等腰三角形,
由此得出③不對,④對.
故答案為:①④.
點評:此題考查了數列與函數的綜合,求解本題的關鍵是反函數的性質及其變化規律研究清楚,由函數的圖形結合等差數列的性質得出答案.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數x從小到大排成數列{xn}.求證:數列{f(xn)}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區二模)已知函數f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•菏澤一模)已知函數f(x)=e|lnx|-|x-
1
x
|,則函數y=f(x+1)的大致圖象為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(x2+x+1).
(Ⅰ)求函數f(x)的單調遞減區間;
(Ⅱ)求函數f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案