中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

若z∈C且|z+2-2i|=1,則|z-1-2i|的最大值是( 。
分析:設z=x+yi(x,y∈R),由|z+2-2i|=1知點Z(x,y)的軌跡可看作以A(-2,2)為圓心,1為半徑的圓,|z-1-2i|可看作點Z到點B(1,2)的距離,從而可得答案.
解答:解:設z=x+yi(x,y∈R),
則|z+2-2i|=|(x+2)+(y-2)i|=1,
所以
(x+2)2+(y-2)2
=1,即(x+2)2+(y-2)2=1,
點Z(x,y)的軌跡可看作以A(-2,2)為圓心,1為半徑的圓,
|z-1-2i||(x-1)+(y-2)i|=
(x-1)2+(y-2)2
,可看作點Z到點B(1,2)的距離,
則距離的最大值為:|AB|+1=3+1=4,即|z-1-2i|的最大值是4,
故選C.
點評:本題考查復數(shù)求模及復數(shù)的幾何意義,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若z∈C且|z+2-2i|=1,則|z-1-2i|的最大值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若z∈C且|z+2-2i|=1,則|z-1+2i|的最小值是
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若z∈C且|z+2-2i|=1,則|z-2+2i|的取值范圍是
[4
2
-1,4
2
+1
]
[4
2
-1,4
2
+1
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若z∈C且|z+2-2i|=1,則|z-2-2i|的最小值是(    )

A.2            B.3               C.4            D.5

查看答案和解析>>

同步練習冊答案