(理)(本題滿分14分)如圖,已知直線
,直線
以及
上一點
.![]()
(Ⅰ)求圓心M在
上且與直線
相切于點
的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線
分別與直線
、圓⊙依次相交于A、B、C三點,
求證:
.
(1)
(2)利用切割線定理來證明。
解析試題分析:(解)(Ⅰ)設(shè)圓心為
,半徑為
,依題意,![]()
. ………………2分
設(shè)直線
的斜率
,過
兩點的直線斜率
,因
,
故
,
∴
,……4分
解得
.
.……6分
所求圓的方程為
.……7分
(Ⅱ)聯(lián)立
則A
則
…….……9分
圓心
,![]()
…….……13分
所以
得到驗證 . …….………….……14分
考點:本試題主要是考查了圓的方程的求解,以及直線與圓相切時的切割線定理的運用。
點評:解決該試題的關(guān)鍵是對于圓的方程的求解,一般采用 方法就是確定出圓心坐標,以及圓的半徑即可,然后利用題目中的條件表示出求解,同時圓與直線相切的時候,切割線定理的運用也是值得關(guān)注的一點。屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系
中,點
,直線
,設(shè)圓
的半徑為,圓心在上.![]()
(1)若圓心
也在直線
上,過點
作圓
的切線,求切線的方程;
(2)若圓
上存在點
,使
,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
動圓M過定點A(-
,0),且與定圓A´:(x-
)2+y2=12相切.![]()
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
己知圓C: (x – 2 )2 + y 2 =" 9," 直線l:x + y = 0.
(1) 求與圓C相切, 且與直線l平行的直線m的方程;
(2) 若直線n與圓C有公共點,且與直線l垂直,求直線n在y軸上的截距b的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
平面直角坐標系
中,直線
截以原點
為圓心的圓所得的弦長為![]()
(1)求圓
的方程;
(2)若直線
與圓
切于第一象限,且與坐標軸交于
,當
長最小時,求直線
的方程;
(3)問是否存在斜率為
的直線
,使
被圓
截得的弦為
,以
為直徑的圓經(jīng)過原點.若存在,寫出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)已知
與兩平行直線
都相切,且圓心
在直線
上,
(Ⅰ)求
的方程;
(Ⅱ)斜率為2的直線
與
相交于
兩點,
為坐標原點且滿足
,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 已知圓
過兩點
,且圓心
在
上.
(1)求圓
的方程;
(2)設(shè)
是直線
上的動點,
是圓
的兩條切線,
為切點,求四邊形
面積的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com