已知:以點(diǎn)C (t,
)(t∈R , t ≠ 0)為圓心的圓與
軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(Ⅰ)求證:△OAB的面積為定值;
(Ⅱ)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
,直線
,
與圓
交與
兩點(diǎn),點(diǎn)
.
(1)當(dāng)
時,求
的值;
(2)當(dāng)
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長為4
,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
動圓M過定點(diǎn)A(-
,0),且與定圓A´:(x-
)2+y2=12相切.![]()
(1)求動圓圓心M的軌跡C的方程;
(2)過點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓
,圓
.![]()
(1)若過點(diǎn)
的直線
被圓
截得的弦長為
,求直線
的方程;
(2)設(shè)動圓
同時平分圓
、圓
的周長.
①求證:動圓圓心
在一條定直線上運(yùn)動;
②動圓
是否過定點(diǎn)?若過,求出定點(diǎn)的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系
中,直線
截以原點(diǎn)
為圓心的圓所得的弦長為![]()
(1)求圓
的方程;
(2)若直線
與圓
切于第一象限,且與坐標(biāo)軸交于
,當(dāng)
長最小時,求直線
的方程;
(3)問是否存在斜率為
的直線
,使
被圓
截得的弦為
,以
為直徑的圓經(jīng)過原點(diǎn).若存在,寫出直線
的方程;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com