中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

(本小題14分)
已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:
,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)上的“k階收縮函數(shù)”
(1)若,試寫出的表達式;
(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,
如果是,求出對應的k,如果不是,請說明理由;
已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍

解:(1)由題意可得:
(2)
時,
時,
時,
綜上所述,
即存在,使得是[-1,4]上的“4階收縮函數(shù)”。
(3),令
函數(shù)的變化情況如下:
        x

0

2


-
0
+
0
-


0

4


(i)當時,上單調遞增,因此,。因為上的“二階收縮函數(shù)”,所以,
恒成立;
②存在,使得成立。
①即:恒成立,由解得
要使恒成立,需且只需
②即:存在,使得成立。
解得
所以,只需
綜合①②可得
(i i)當時,上單調遞增,在上單調遞減,
因此,
顯然當時,不成立。
(i i i)當時,上單調遞增,在上單調遞減,因此,
顯然當時,不成立。
綜合(i)(i i)(i i i)可得:
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.本小題滿分12分)已知函數(shù)是R上的奇函數(shù),
取得極值
(1)求的單調區(qū)間和極大值;
(2)證明對任意,不等式恒成立. 、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設函數(shù)
(I)若函數(shù)處的切線為直線相切,求a的值;
(II)當時,求函數(shù)的單調區(qū)間。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設函數(shù)上的導函數(shù)為上的導函數(shù)為,若在上,恒成立,則稱函數(shù)上為“凸函數(shù)”.已知
(1)若為區(qū)間上的“凸函數(shù)”,試確定實數(shù)的值;
(2)若當實數(shù)滿足時,函數(shù)上總為“凸函數(shù)”,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過原點作曲線的切線,則切點為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的圖象在處的切線方程為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,函數(shù)的導函數(shù)是,若是偶函數(shù),則曲線在原點處的切線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),則函數(shù)的圖像在處的切線方程是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)處的切線方程為(   )
A.B.
C.D.

查看答案和解析>>