統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量
(升)關(guān)于行駛速度
(千米/每小時)的函數(shù)解析式可以表示為
,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?
(1)17.5;(2)80,11.2.
解析試題分析:(1)求從甲地到乙地要耗油多少升,需要知道行駛時間和每小時的耗油量,行駛時間可由路程和行駛速度得出,而每小時耗油量是行駛速度的函數(shù),可由條件中的函數(shù)關(guān)系式求出;(2)設(shè)速度為
千米/小時,與(1)相同,可分別求出行駛時間和每小時的耗油量,則甲地到乙地耗油油量是速度的函數(shù),列出函數(shù)關(guān)系式,再用導(dǎo)數(shù)求函數(shù)的最值.
試題解析:(1)當
千米/小時時,汽車從甲地到乙地行駛了
小時,要耗油
(升)
所以,當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油17.5升
(2)設(shè)速度為
千米/小時,汽車從甲地到乙地行駛了
小時,設(shè)耗油量為
升,依題意得
![]()
令
,得![]()
當
時,
,
是減函數(shù),當
時,
,
是增函數(shù)∴當
時,
取得極小值
此時
(升)
答:當汽車以80千米/小時的速度勻速行駛時,從甲地到乙耗油量少,最少為11.2升
考點:函數(shù)的應(yīng)用,與導(dǎo)數(shù)與函數(shù)的單調(diào)性最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)
為偶函數(shù),且在區(qū)間
上是單調(diào)增函數(shù)
(1)求函數(shù)
的解析式;
(2)設(shè)函數(shù)
,其中
.若函數(shù)
僅在
處有極值,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠有
名工人,現(xiàn)接受了生產(chǎn)
臺
型高科技產(chǎn)品的總?cè)蝿?wù).已知每臺
型產(chǎn)品由
個
型裝置和
個
型裝置配套組成,每個工人每小時能加工
個
型裝置或
個
型裝置.現(xiàn)將工人分成兩組同時開始加工,每組分別加工一種裝置(完成自己的任務(wù)后不再支援另一組).設(shè)加工
型裝置的工人有
人,他們加工完
型裝置所需時間為
,其余工人加工完
型裝置所需時間為
(單位:小時,可不為整數(shù)).
(1)寫出
、
的解析式;
(2)寫出這
名工人完成總?cè)蝿?wù)的時間
的解析式;
(3)應(yīng)怎樣分組,才能使完成總?cè)蝿?wù)用的時間最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域為[0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負數(shù),求g(a)=2-a|a+3|的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
滿足對任意實數(shù)
都有
成立,且當
時,
,
.
(1)求
的值;
(2)判斷
在
上的單調(diào)性,并證明;
(3)若對于任意給定的正實數(shù)
,總能找到一個正實數(shù)
,使得當
時,
,則稱函數(shù)
在
處連續(xù)。試證明:
在
處連續(xù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖像與函數(shù)h(x)=x++2的圖像關(guān)于點A(0,1)對稱.
(1) 求
的解析式;
(2) 若
,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
漁場中魚群的最大養(yǎng)殖量是m噸,為保證魚群的生長空間,實際養(yǎng)殖量不能達到最大養(yǎng)殖量,必須留出適當?shù)目臻e量。已知魚群的年增長量y噸和實際養(yǎng)殖量x噸與空閑率乘積成正比,比例系數(shù)為k(k>0).
寫出y關(guān)于x的函數(shù)關(guān)系式,指出這個函數(shù)的定義域;
求魚群年增長量的最大值;
當魚群的年增長量達到最大值時,求k的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com