在平面直角坐標(biāo)系
中,已知
,
,
,
,其中
.設(shè)直線
與
的交點(diǎn)為
,求動(dòng)點(diǎn)
的軌跡的參數(shù)方程(以
為參數(shù))及普通方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
的參數(shù)方程為![]()
是參數(shù)
,
是曲線
與
軸正半軸的交點(diǎn).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過(guò)點(diǎn)
與曲線
只有一個(gè)公共點(diǎn)的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
,拋物線
的焦點(diǎn)均在
軸上,
的中心和
的頂點(diǎn)均為原點(diǎn)
,每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率
,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
與曲線
的交點(diǎn)為
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為
,曲線C2的參數(shù)方程為
為參數(shù))。
(1)當(dāng)
時(shí),求曲線Cl與C2公共點(diǎn)的直角坐標(biāo);
(2)若
,當(dāng)
變化時(shí),設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
,
是長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)
滿足
,聯(lián)結(jié)
,交橢圓于點(diǎn)
. ![]()
(1)當(dāng)
,
時(shí),設(shè)
,求
的值;
(2)若
為常數(shù),探究
滿足的條件?并說(shuō)明理由;
(3)直接寫出
為常數(shù)的一個(gè)不同于(2)結(jié)論類型的幾何條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的焦距為4,且過(guò)點(diǎn)
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)
為橢圓
上一點(diǎn),過(guò)點(diǎn)
作
軸的垂線,垂足為
。取點(diǎn)
,連接
,過(guò)點(diǎn)
作
的垂線交
軸于點(diǎn)
。點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),作直線
,問(wèn)這樣作出的直線
是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
到兩點(diǎn)
,
的距離之和等于4,設(shè)點(diǎn)
的軌跡為
,直線
與軌跡
交于
兩點(diǎn).
(Ⅰ)寫出軌跡
的方程;
(Ⅱ)求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com