中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數(1)若,求函數的極值;
(2)若函數上單調遞減,求實數的取值范圍;
(3)在函數的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

(1)極大值為0,無極小值;(2);(3)不存在.

解析試題分析:(1)先求函數定義域,然后求導,判斷單調性,根據單調性求極值;(2)因為函數上單調遞減,所以恒成立,得到,下面只需求出
的最大值就行;(3)先假設存在,設出點得到,判斷方程無根,所以不存在兩點.
試題解析:(1)的定義域為                  1分
,                2分
單調遞增;
單調遞減,       3分
時,取得極大值,無極小值。           4分
(2)
若函數上單調遞減,
恒成立             5分
,只需      6分
時,,則,   7分
的取值范圍為             8分
(3)假設存在,不妨設
         9分
                10分
,整理得   11分
, 12分,
上單調遞增,               13分
,故
∴不存在符合題意的兩點。          14分.
考點:1.極值的求法;2.恒成立問題的求法;3.利用導數判斷方程無解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)若處的切線方程;
(2)若在區間上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)若函數上是減函數,求實數的最小值;
(2)若,使)成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底數).
(Ⅰ)當時,求的單調區間;
(Ⅱ)若函數上無零點,求最小值;
(Ⅲ)若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是定義在的可導函數,且不恒為0,記.若對定義域內的每一個,總有,則稱為“階負函數”;若對定義域內的每一個,總有
則稱為“階不減函數”(為函數的導函數).
(1)若既是“1階負函數”,又是“1階不減函數”,求實數的取值范圍;
(2)對任給的“2階不減函數”,如果存在常數,使得恒成立,試判斷是否為“2階負函數”?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)若處取得極值,
①求的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調函數,求的取值范圍.(參考數據

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知處都取得極值.
(Ⅰ) 求的值;
(Ⅱ)設函數,若對任意的,總存在,使得、,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,判斷函數是否有極值;
(Ⅱ)若時,總是區間上的增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數f(x)的單調區間;
(2)求y=f(x)的極值點(即函數取到極值時點的橫坐標).

查看答案和解析>>

同步練習冊答案