(本小題滿分12分)
如圖1,在Rt
中,
,
.D、E分別是
上的點,且
,將
沿
折起到
的位置,使
,如圖2.![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
,求
與平面
所成角的余弦值;
(Ⅲ)當
點在何處時,
的長度最小,并求出最小值.
(Ⅰ)證明:在△
中,
結合
推出
平面
.
再根據
得到
平面
,平面
平面
。
(Ⅱ)直線BE與平面
所成角的余弦值為
.
(Ⅲ)當
時
最大為
。
解析試題分析:(Ⅰ)證明:在△
中,
.又![]()
![]()
平面
.
又![]()
平面
,又
平面
,故平面
平面
……(4分)
(Ⅱ)由(1)知
故以D為原點,
分別為x,y,z軸建立直角坐標系. 因為CD="2," 則
…(5分)
,設平面
的一個法向量為![]()
則
取法向量
,則直線BE與平面
所成角
,![]()
………………(8分)
故直線BE與平面
所成角的余弦值為
. …………………(9分)
(Ⅲ)設
,則
,則
,![]()
,則當
時
最大為
.…(12分)
考點:本題主要考查立體幾何中的垂直關系,距離及角的計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題(3),得到距離表達式后,應用了二次函數在指定區間的最值求法,達到解題目的。
科目:高中數學 來源: 題型:解答題
如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=![]()
![]()
(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐
中,
,
,
,
,
, 點
,
分別在棱
上,且
,![]()
(Ⅰ)求證:
平面PAC
(Ⅱ)當
為
的中點時,求
與平面
所成的角的正弦值;
(Ⅲ)是否存在點
使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.![]()
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)在直三棱柱(側棱垂直底面)
中,
,
.![]()
(Ⅰ)若異面直線
與
所成的角為
,求棱柱的高;
(Ⅱ)設
是
的中點,
與平面
所成的角為
,當棱柱的高變化時,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com