(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.![]()
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
(I)建立空間直角坐標(biāo)系后,計(jì)算
證得PQ⊥DQ,PQ⊥DC.PQ⊥平面DCQ.
再據(jù)PQ
平面PQC,得到平面PQC⊥平面DCQ. (II)
解析試題分析:如圖,以D為坐標(biāo)原點(diǎn),線段DA的長(zhǎng)為單位長(zhǎng),射線DA為x軸的正半軸建立空間直角坐標(biāo)系D—xyz.![]()
(I)依題意有Q(1,1,0),C(0,0,1),P(0,2,0).
則![]()
所以![]()
即PQ⊥DQ,PQ⊥DC.
故PQ⊥平面DCQ.
又PQ
平面PQC,所以平面PQC⊥平面DCQ. …………6分
(II)依題意有B(1,0,1),![]()
設(shè)
是平面PBC的法向量,則![]()
因此可取![]()
設(shè)m是平面PBQ的法向量,則![]()
可取![]()
故二面角Q—BP—C的余弦值為
………………12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算,空間向量的應(yīng)用。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡(jiǎn)化證明過程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,
,
,現(xiàn)將梯形沿CB、DA折起,使
且
,得一簡(jiǎn)單組合體
如圖2示,已知
分別為
的中點(diǎn).![]()
![]()
圖1 圖2
(1)求證:
平面
;
(2)求證:![]()
;
(3)當(dāng)
多長(zhǎng)時(shí),平面
與平面
所成的銳二面角為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖1,在Rt
中,
,
.D、E分別是
上的點(diǎn),且
,將
沿
折起到
的位置,使
,如圖2.![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
,求
與平面
所成角的余弦值;
(Ⅲ)當(dāng)
點(diǎn)在何處時(shí),
的長(zhǎng)度最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,棱柱
的側(cè)面
是菱形,![]()
![]()
(1)證明:平面![]()
平面
;
(2)設(shè)
是
上的點(diǎn),且
平面
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如圖,在三棱錐S—ABC中,
是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =
,M、N分別為AB、SB的中點(diǎn)。![]()
⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點(diǎn)B到平面CMN的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在如圖所示的四棱錐
中,已知 PA⊥平面ABCD,
,
,
,
為
的中點(diǎn).![]()
(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,
.![]()
(1)求證:FC∥平面AED;
(2)若
,當(dāng)二面角
為直二面角時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱
中,
,
分別是棱
上的點(diǎn)(點(diǎn)
不同于點(diǎn)
),且
為
的中點(diǎn).![]()
求證:(1)平面
平面
;
(2)直線
平面
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com