設(shè)函數(shù)
,其中
為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)記曲線
在點(diǎn)
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問(wèn)利用由已知
,所以
,
由
,得
,
所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線
在點(diǎn)
處切線為
:
.
切線
與
軸的交點(diǎn)為
,與
軸的交點(diǎn)為
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時(shí),
有最大值,此時(shí)
,
解:(Ⅰ)由已知
,所以
,
由
,得
, 所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
即函數(shù)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線
在點(diǎn)
處切線為
:
.
切線
與
軸的交點(diǎn)為
,與
軸的交點(diǎn)為
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時(shí),
有最大值,此時(shí)
,
所以,
的最大值為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省揭陽(yáng)市高三學(xué)業(yè)水平考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)![]()
,其中
,
為正整數(shù),
、
、
均為常數(shù),曲線
在
處的切線方程為
.
(1)求
、
、
的值;
(2)求函數(shù)
的最大值;
(3)證明:對(duì)任意的
都有
.(
為自然對(duì)數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省七校高三上學(xué)期第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,其中a>0.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若直線
是曲線
的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)
,求
在區(qū)間
上的最大值(其中e為自然對(duì)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(滿分15分)設(shè)函數(shù)
,
,(其中
為自然底數(shù));
(Ⅰ)求
(
)的最小值;
(Ⅱ)探究是否存在一次函數(shù)
使得
且
對(duì)一切
恒成立;若存在,求出一次函數(shù)的表達(dá)式,若不存在,說(shuō)明理由;
(Ⅲ)數(shù)列
中,
,
,求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:陜西省模擬題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
其中
為自然對(duì)數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對(duì)于任意的
,都有
成立,求
的取值范圍.
【解析】第一問(wèn)中,當(dāng)
時(shí),
,
.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。
第二問(wèn)中,∵
,
,
∴原不等式等價(jià)于:
,
即
, 亦即![]()
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)
時(shí),
,
.
當(dāng)
在
上變化時(shí),
,
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
時(shí),
,
.
(Ⅱ)∵
,
,
∴原不等式等價(jià)于:
,
即
, 亦即
.
∴對(duì)于任意的
,原不等式恒成立,等價(jià)于
對(duì)
恒成立,
∵對(duì)于任意的
時(shí),
(當(dāng)且僅當(dāng)
時(shí)取等號(hào)).
∴只需
,即
,解之得
或
.
因此,
的取值范圍是![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com