中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數.
(Ⅰ)當時,求函數的單調區間和極值;
(Ⅱ)若在區間上是單調遞減函數,求實數的取值范圍.
(Ⅰ)單調遞減區間是 ;單調遞增區間是.極小值是 
(Ⅱ)的最小值為的取值范圍是.

試題分析:(Ⅰ)函數的定義域為(0,+∞).
時,              2分
變化時,的變化情況如下:





-
0
+

 
極小值

的單調遞減區間是 ;單調遞增區間是.
極小值是                          6分
(Ⅱ)由,得           8分
又函數上的單調減函數.
上恒成立, 所以不等式上恒成立,
上恒成立.                        10分
,顯然上為減函數,
所以的最小值為的取值范圍是.       12分
點評:典型題,本題屬于導數應用中的基本問題,通過研究函數的單調性,明確了極值情況。通過研究函數的單調區間、最值情況,得到證明不等式。恒成立問題,往往要轉化成函數最值求法。本題涉及對數函數,要特別注意函數的定義域。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數為奇函數,且在處取得極大值2.
(Ⅰ)求的解析式;
(Ⅱ)過點(可作函數圖像的三條切線,求實數的取值范圍;
(Ⅲ)若對于任意的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數.
(1)求f(x)的單調區間;
(2)若當x∈[-2,2]時,不等式f(x)>m恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的遞減區間是
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調遞減區間為______________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數)滿足,且的導函數<,則<的解集為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求函數的單調區間;
(2)設,對任意的,總存在,使得不等式成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的最大值是             

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數 為常數,
(1)當時,求函數處的切線方程;
(2)當處取得極值時,若關于的方程上恰有兩個不相等的實數根,求實數的取值范圍;
(3)若對任意的,總存在,使不等式成立,求實數的取值范圍。

查看答案和解析>>

同步練習冊答案