已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿直線BD將△BCD翻折成△BC
D,使得平面BC
D
平面ABD.![]()
(1)求證:C'D
平面ABD;
(2)求直線BD與平面BEC'所成角的正弦值.
(1)證明:見(jiàn)解析;(2)直線
與平面
所成角的正弦值為
.
解析試題分析:(1)注意到平行四邊形
中,
,
,
,
沿直線
將△
翻折成△
后
,
,
,
由給定了
,得
.再根據(jù)平面
⊥平面
,平面![]()
平面
即得證;
(2)由(1)知
平面
,且
,因此,可以
為原點(diǎn),建立空間直角坐標(biāo)系
.
確定平面
法向量為
,
設(shè)直線
與平面
所成角為
,即得所求.
試題解析:(1)平行四邊形
中,
,
,
,
沿直線
將△
翻折成△![]()
可知
,
,
,
即
,
. 2分
∵平面
⊥平面
,平面![]()
平面
,
平面
,∴
平面
. 5分
(2)由(1)知
平面
,且
,
如圖,以
為原點(diǎn),建立空間直角坐標(biāo)系
. 6分![]()
則
,
,
,
.
∵
是線段
的中點(diǎn),
∴
,
.
在平面
中,
,
,
設(shè)平面
法向量為
,
∴
,即
,
令
,得![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形
與梯形
所在的平面互相垂直,
,
∥
,
,
,
為
的中點(diǎn).
(1)求證:
∥平面
;
(2)求證:平面
平面
;
(3)求平面
與平面
所成銳二面角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形
為平行四邊形,
,
平面
,
,
,
,
.![]()
(1)若
是線段
的中點(diǎn),求證:
平面
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐
中,
//
,
,
,
平面
,
. ![]()
(1)求證:
平面
;
(2)求異面直線
與
所成角的余弦值;
(3)設(shè)點(diǎn)
為線段
上一點(diǎn),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐
的底面為直角梯形,
,
,
底面
,且
,
是
的中點(diǎn).
⑴求證:直線
平面
;
⑵⑵若直線
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,
是正方形
所在平面外一點(diǎn),且
,
,若
、
分別是
、
的中點(diǎn).![]()
(1)求證:
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F(xiàn)為底面圓周上一點(diǎn),滿足EF⊥DE.![]()
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com