(14分)已知函數(shù)
,設(shè)曲線
在點(diǎn)
處的切線與
軸的交點(diǎn)為
,其中
為正實(shí)數(shù)
(1)用
表示
;
(2)
,若
,試證明數(shù)列
為等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
解析:(1)由題可得
,所以在曲線上點(diǎn)
處的切線方程為
,即
-----------------2分
令
,得
,即![]()
由題意得
,所以
-----------------4分
(2)因?yàn)?IMG height=48 src='http://thumb.zyjl.cn/pic1/img/20090530/20090530142752009.gif' width=81>,所以![]()
![]()
即
,所以數(shù)列
為等比數(shù)列故
---8分
(3)當(dāng)
時(shí),![]()
當(dāng)
時(shí),![]()
所以數(shù)列
的通項(xiàng)公式為
,故數(shù)列
的通項(xiàng)公式為![]()
①
①
的
②
①
②得![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(12分)已知函數(shù)
,設(shè)曲線
在點(diǎn)
處的切線與
軸的交點(diǎn)為![]()
用
表示
;
求證:
對(duì)一切正整數(shù)
都成立的充要條件為
;
若
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年四川卷理)(12分)已知函數(shù)
,設(shè)曲線
在點(diǎn)
處的切線與
軸的交點(diǎn)為![]()
,其中
為正實(shí)數(shù).
(Ⅰ)用
表示
;
(Ⅱ) 證明:對(duì)一切正整數(shù)
的充要條件是![]()
(Ⅲ)若
,記
,證明數(shù)列
成等比數(shù)列,并求數(shù)列
的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在點(diǎn)
處的切線與
軸的交點(diǎn)為
,其中
為正實(shí)數(shù).
(1)用
表示
;
(2)
,若
,試證明數(shù)列
為等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(3)若數(shù)列
的前
項(xiàng)和
,記數(shù)列
的前
項(xiàng)和
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在點(diǎn)
處的切線與
軸的交點(diǎn)為
,其中
為正實(shí)數(shù).
(1)用
表示
;
(2)
,若
,試證明數(shù)列
為等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(3)若數(shù)列
的前
項(xiàng)和
,記數(shù)列
的前
項(xiàng)和
,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com