中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知點M,N是曲線y=sinπx與曲線y=cosπx的兩個不同的交點,則|MN|的最小值為(  )
分析:|MN|的最小值即一個周期內兩個交點的距離,列出方程求出兩個交點坐標,據兩點的距離公式求出|MN|的最小值.
解答:解:要求|MN|的最小值在,只要在一個周期內解即可.
∵sinπx=cosπx,解得πx=
π
4
或 
4
,即x=
1
4
或 
5
4

故可以令點M,N的坐標分別為(
1
4
2
2
)或(
5
4
,-
2
2
),
故|MN|=
(
1
4
-
5
4
)
2
+(
2
2
+
2
2
)
2
=
3
,故|MN|的最小值為
3

故選C.
點評:本題考查等價轉化的數學思想方法、兩點的距離公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A、B分別是x軸和y軸上的兩個動點,滿足|AB|=2,點P在線段AB上且
AP
=2
PB
,設點P的軌跡方程為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若點M、N是曲線C上關于原點對稱的兩個動點,點Q的坐標為(
3
2
,3)
,求△QMN的面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點M,N分別在直線y=mx和y=-mx(m>0)上運動,點P是線段MN的中點,且|MN|=2,動點P的軌跡是曲線C.
(1)求曲線C的方程,并討論方程所表示的曲線類型;
(2)設m=
2
2
時,過點A(-
2
6
3
,0)的直線l與曲線C恰有一個公共點,求直線l的斜率.

查看答案和解析>>

科目:高中數學 來源:2012年遼寧省大連市高考數學壓軸卷 (文科)(解析版) 題型:選擇題

已知點M,N是曲線y=sinπx與曲線y=cosπx的兩個不同的交點,則|MN|的最小值為( )
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中數學 來源:2012年江西省贛州三中、于都中學高三聯合考試數學試卷(理科)(解析版) 題型:選擇題

已知點M,N是曲線y=sinπx與曲線y=cosπx的兩個不同的交點,則|MN|的最小值為( )
A.1
B.
C.
D.2

查看答案和解析>>

同步練習冊答案