中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)=
(2-a)x+1(x<1)
ax(x≥1)
滿足對任意x1x2,都有
f(x1)-f(x2)
x1-x2
>0
成立,那么a的取值范圍是( 。
分析:由對任意x1x2,都有
f(x1)-f(x2)
x1-x2
>0
成立,可確定函數在R上單調增,利用單調性的定義,建立不等式組,即可求得a的取值范圍.
解答:解:∵對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0成立,
∴函數在R上單調增,
2-a>0
a>1
a1≥(2-a)×1+1
,解得
3
2
≤a<2,
所以a的取值范圍是[
3
2
,2).
故選A.
點評:本題考查函數的單調性,考查函數單調性定義的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=
2-
x+3
x+1
的定義域為A,集合B={x|2a≤x≤a+1}
(1)求集合A
(2)若B⊆A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•惠州模擬)設n為正整數,規定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2
,
(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=2+x2cos(
π
2
+x)在[-a,a](a>0)
上的最大值與最小值分別為M、m,則M+m的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知n為正整數,規定f1(x)=f(x),fn+1(x)=f(fn(x)),已知f(x)=
2(1-x),0≤x≤1
x-1,
 1<x≤2
,
(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x.

查看答案和解析>>

同步練習冊答案