已知
,其中
是自然常數(shù),![]()
(1)討論
時,
的單調(diào)性、極值;
(2)是否存在實(shí)數(shù)
,使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(1)當(dāng)
時,
單調(diào)遞減;當(dāng)
時,此時
單調(diào)遞增
∴
的極小值為![]()
(2)在實(shí)數(shù)
,使得當(dāng)
時
有最小值3.
解析試題分析:.解:(1)![]()
,
∴當(dāng)
時,
,此時
單調(diào)遞減
當(dāng)
時,
,此時
單調(diào)遞增
∴
的極小值為![]()
(2)假設(shè)存在實(shí)數(shù)
,使
(
)有最小值3,![]()
![]()
① 當(dāng)
時,
在
上單調(diào)遞減,
,
(舍去),所以,此時
無最小值.
②當(dāng)
時,
在
上單調(diào)遞減,在
上單調(diào)遞增
,
,滿足條件.
③ 當(dāng)
時,
在
上單調(diào)遞減,
,
(舍去),所以,此時
無最小值.綜上,存在實(shí)數(shù)
,使得當(dāng)
時
有最小值3.
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,體現(xiàn)了分類討論思想的綜合運(yùn)用,屬于中檔題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
的導(dǎo)數(shù)
滿足
,其中
.
求曲線
在點(diǎn)
處的切線方程;
設(shè)
,求函數(shù)
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(2)當(dāng)
時,若
在區(qū)間
上的最小值為-2,求實(shí)數(shù)
的取值范圍;
(3)若對任意
,且
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的最大值;
(Ⅱ)若對任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
為常數(shù),e是自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)
時,證明
恒成立;
(Ⅱ)若
,且對于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若在
上至少存在一點(diǎn)
,使得
>
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,且對于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù)
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com