中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數的定義域是,對于任意的,有,且當時,.
(1)求的值;
(2)判斷函數的奇偶性;
(3)用函數單調性的定義證明函數為增函數;
(4)若恒成立,求實數的取值范圍.
(1);(2)奇函數;(3)詳見解析;(4).

試題分析:(1)采用附值法,令代入即可求出;(2)先說明函數的定義域關于原點對稱,然后令得到,然后可化成,可判斷函數為奇函數;(3)設,則,所以,從而利用單調性的定義證出函數上為增函數;(4)先將不等式轉化成,再由函數的單調遞增性,又轉化為,再分離參數得不等式,該不等式恒成立等價于,求出的最小值即可求出的取值范圍.
試題解析:(1)取得,    2分
(2)函數為奇函數,理由如下:已知函數的定義域為
代入,得,又,則
為奇函數    5分
(3)證明:設,則
知,,則
則函數上的增函數    9分
(4)由恒成立,又即為奇函數
得:恒成立。又函數為R上的增函數
恒成立    11分
恒成立
設:
,則,即,知時,
,即實數的取值范圍為    14分.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調遞增.
(2)若a>0且f(x)在(1,+∞)上單調遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,其中.
(I) 若,求的值;    (II) 若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為(  ).
A.(-1,1)B.(-1,+∞)
C.(-∞,-1)D.(-∞,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

能夠把圓的周長和面積同時分為相等的兩部分的函數稱為圓的“和
諧函數”,下列函數不是圓的“和諧函數”的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列函數中既是奇函數又是上的增函數的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數上是增函數,則實數的范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知偶函數在區間單調遞減,則滿足取值范圍是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)=的最大值為,最小值為
那么       

查看答案和解析>>

同步練習冊答案