設(shè)數(shù)列
是等差數(shù)列,
是各項(xiàng)均為正數(shù)的等比數(shù)列,且![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)若
為數(shù)列
的前
項(xiàng)和,求
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列
的前
項(xiàng)和為
,已知對(duì)任意的
,點(diǎn)
均在函數(shù)
且
均為常數(shù))的圖像上.
(Ⅰ)求
的值;
(Ⅱ)當(dāng)
時(shí),記
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,數(shù)列
前
項(xiàng)和
,
,數(shù)列
,滿足
.(Ⅰ)求數(shù)列
的通項(xiàng)公式
;
(Ⅱ)設(shè)數(shù)列
的前
項(xiàng)和為
,數(shù)列
的前
項(xiàng)和為
,證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是首項(xiàng)為
,公差為
的等差數(shù)列(
),
是前
項(xiàng)和. 記
,
,其中
為實(shí)數(shù).
(1)若
,且
,
,
成等比數(shù)列,證明:
;
(2)若
是等差數(shù)列,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是公比為q的等比數(shù)列.
(Ⅰ) 推導(dǎo)
的前n項(xiàng)和公式;
(Ⅱ) 設(shè)q≠1, 證明數(shù)列
不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{an}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an和bn;
(Ⅱ) 設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是各項(xiàng)都為正數(shù)的等比數(shù)列,
是等差數(shù)列,且
,![]()
![]()
(Ⅰ)求數(shù)列
,
的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列
的前
項(xiàng)和為
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
是首項(xiàng)
的等比數(shù)列,且
,
,
成等差數(shù)列.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,設(shè)
為數(shù)列
的前
項(xiàng)和,若
對(duì)一切
恒
成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
中,
.
(Ⅰ)設(shè)
,求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
求證:
是遞增數(shù)列的充分必要條件是
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com