(12分)已知函數(shù)![]()
.
(Ⅰ)若
,求曲線(xiàn)
在
處切線(xiàn)的斜率;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
(Ⅰ)曲線(xiàn)
在
處切線(xiàn)的斜率為
.
(Ⅱ)函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
. (Ⅲ)
.
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)已知函數(shù)
的圖象與函數(shù)
的圖象關(guān)于直線(xiàn)
對(duì)稱(chēng);
證明:當(dāng)
時(shí),![]()
(3)如果
且
,證明![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
其中
,曲線(xiàn)
在點(diǎn)
處的切線(xiàn)垂直于
軸.
(Ⅰ)求
的值;
(Ⅱ)求函數(shù)
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù)
.
(I)若
,求函數(shù)
的極值;
(II)若對(duì)任意的
,都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題13分)已知函數(shù)
(
為常數(shù))
(1)若
在區(qū)間
上單調(diào)遞減,求
的取值范圍;
(2)若
與直線(xiàn)
相切:
(。┣
的值;
(ⅱ)設(shè)
在
處取得極值,記點(diǎn)M (
,
),N(
,
),P(
),
, 若對(duì)任意的m
(
, x
),線(xiàn)段MP與曲線(xiàn)f(x)均有異于M,P的公共點(diǎn),試確定
的最小值,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
,其中
。
(1)若
是函數(shù)
的極值點(diǎn),求實(shí)數(shù)
的值。
(2)若對(duì)任意的
,
(
為自然對(duì)數(shù)的底數(shù))都有
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為實(shí)數(shù),
,
為
的導(dǎo)函數(shù).
(Ⅰ)若
,求
在
上的最大值和最小值;
(Ⅱ)若
在
和
上均單調(diào)遞增,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)![]()
(I)討論
的單調(diào)性;
(II)若
有兩個(gè)極值點(diǎn)
和
,記過(guò)點(diǎn)
的直線(xiàn)的斜率為
,問(wèn):是否存在
,使得
?若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)若曲線(xiàn)
在點(diǎn)
處的切線(xiàn)的傾斜角為
,求實(shí)數(shù)
的值;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)實(shí)數(shù)
的范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com