中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2011•東城區二模)已知sin(A+
π
4
)=
7
2
10
A∈(
π
4
π
2
)

(Ⅰ)求cosA的值;
(Ⅱ)求函數f(x)=cos2x+
5
2
sinAsinx
的值域.
分析:(Ⅰ)先利用同角三角函數基本關系式求cos(A+
π
4
)
,注意對角的范圍的判斷,再利用兩角差的余弦公式將cosA變換為cos[(A+
π
4
)-
π
4
]
,代入計算即可
(Ⅱ)先將所求函數變換為復合函數f(x)=1-2sin2x+2sinx,再利用三角函數的有界性及配方法求此復合函數的值域即可
解答:解:(Ⅰ)因為
π
4
<A<
π
2
,且sin(A+
π
4
)=
7
2
10

所以
π
2
<A+
π
4
4
cos(A+
π
4
)=-
2
10

因為cosA=cos[(A+
π
4
)-
π
4
]=cos(A+
π
4
)cos
π
4
+sin(A+
π
4
)sin
π
4
=-
2
10
2
2
+
7
2
10
2
2
=
3
5

所以cosA=
3
5
.                 
(Ⅱ)由(Ⅰ)可得sinA=
4
5

所以f(x)=cos2x+
5
2
sinAsinx
=1-2sin2x+2sinx=-2(sinx-
1
2
)2+
3
2
,x∈R.
因為sinx∈[-1,1],所以,當sinx=
1
2
時,f(x)取最大值
3
2

當sinx=-1時,f(x)取最小值-3.
所以函數f(x)的值域為[-3,
3
2
]
點評:本題考察了同角三角函數基本關系式,兩角差的余弦公式,通過角變換求三角函數值的技巧,復合函數求值域的方法
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•東城區二模)給出下列三個命題:
①?x∈R,x2>0;
②?x0∈R,使得x02≤x0成立;
③對于集合M,N,若x∈M∩N,則x∈M且x∈N.
其中真命題的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•東城區二模)已知正項數列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),則a6等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•東城區二模)已知雙曲線
x2
a2
-
y2
b2
=1 (a>0,b>0)
,過其右焦點且垂直于實軸的直線與雙曲線交于M,N兩點,O為坐標原點.若OM⊥ON,則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•東城區二模)某地為了調查職業滿意度,決定用分層抽樣的方法從公務員、教師、自由職業者三個群體的相關人員中,抽取若干人組成調查小組,有關數據見下表,則調查小組的總人數為
9
9
;若從調查小組中的公務員和教師中隨機選2人撰寫調查報告,則其中恰好有1人來自公務員的概率為
3
5
3
5

相關人員數 抽取人數
公務員 32 x
教師 48 y
自由職業者 64 4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•東城區二模)已知點P(2,t)在不等式組
x-y-4≤0
x+y-3≤0
表示的平面區域內,則點P(2,t)到直線3x+4y+10=0距離的最大值為
4
4

查看答案和解析>>

同步練習冊答案