中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知是等差數列,其前n項和為Sn是等比數列,且.
(Ⅰ)求數列的通項公式;
(Ⅱ)記,證明).
(1)  (2)
【考點定位】本小題主要考查等差數列與等比數列的概念、通項公式、前n項和公式、數列求和等基礎知識.考查化歸與轉化的思想方法.考查運算能力、推理論證能力.該試題命制比較直接,沒有什么隱含的條件,就是等比與等差數列的綜合應用,但方法多樣,第二問可以用錯位相減法求解證明,也可用數學歸納法證明,給學生思維空間留有余地,符合高考命題選拔性的原則
(1)設等差數列的公差為d,等比數列的公比為q.
,得.
由條件,得方程組,解得
所以.
(2)證明:(方法一)
由(1)得
    ①
  ②
由②-①得





(方法二:數學歸納法)
① 當n=1時,,故等式成立.
② 假設當n=k時等式成立,即,則當n=k+1時,有:






,因此n=k+1時等式也成立
由①和②,可知對任意成立.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

,其中成公比為q的等比數列,成公差為1的等差數列,則q的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知數列是等比數列,首項
(Ⅰ)求數列的通項公式(Ⅱ)若數列是等差數列,且,求數列的通項公式及前項的和

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知是等差數列,其前n項和為是等比數列,且 
(I)求數列的通項公式;
(II)記求證:,
【考點定位】本小題主要考查等差數列與等比數列的概念、通項公式、前n項和公式、數列求和等基礎知識.考查化歸與轉化的思想方法.考查運算能力、推理論證能力.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在等差數列{an}中,已知a4+a8=16,則該數列前11項和S11=
A.58B.88C.143D.176

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等比數列中,是前項和,若成等差數列,則數列的公比為
A.  B.   C.  D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

數列中,已知,則  ▲  .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在等差數列中,已知等于
A.10B.45C.43D.42

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設等差數列的前項和為,若,則的最大值為         .

查看答案和解析>>

同步練習冊答案