(本小題13分)已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓
和
上,
,求直線
的方程.
(1)
(2)
或![]()
解析試題分析:(1)由已知可設(shè)橢圓
的方程為
其離心率為
,故
,則![]()
故橢圓的方程為
5分
(2)解法一
兩點(diǎn)的坐標(biāo)分別記為
由
及(1)知,
三點(diǎn)共線且點(diǎn)
,
不在
軸上,
因此可以設(shè)直線
的方程為![]()
將
代入
中,得
,所以![]()
將
代入
中,則
,所以![]()
由
,得
,即![]()
解得
,故直線
的方程為
或
13分
考點(diǎn):橢圓方程性質(zhì)及直線與橢圓相交問題
點(diǎn)評(píng):第二問由已知中的向量可知只需求解出A,B兩點(diǎn)坐標(biāo)代入即可得到關(guān)于所求直線斜率k的直線,因此設(shè)AB直線,聯(lián)立方程解出方程組
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是F拋物線
與橢圓
的公共焦點(diǎn),且橢圓的離心率為![]()
![]()
(1)求橢圓的方程;
(2)過拋物線上一點(diǎn)P,作拋物線的切線
,切點(diǎn)P在第一象限,如圖,設(shè)切線
與橢圓相交于不同的兩點(diǎn)A、B,記直線OP,F(xiàn)A,FB的斜率分別為
(其中
為坐標(biāo)原點(diǎn)),若
,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)M是圓C:
上的一點(diǎn),且![]()
軸,
為垂足,點(diǎn)
滿足
,記動(dòng)點(diǎn)
的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動(dòng)弦,O為坐標(biāo)原點(diǎn),求
面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足
,
.
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)
為軌跡C上兩點(diǎn),且
,N(1,0),求實(shí)數(shù)
,使
,且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的右焦點(diǎn)為
,離心率為
。
(1)若
,求橢圓的方程。
(2)設(shè)直線
與橢圓相交于
兩點(diǎn),
分別為線段
的中點(diǎn)。若坐標(biāo)原點(diǎn)
在以線段
為直徑的圓上,且
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,點(diǎn)
為橢圓
的右頂點(diǎn), 點(diǎn)
,點(diǎn)
在橢圓上,
.![]()
![]()
(1)求直線
的方程;
(2)求直線
被過
三點(diǎn)的圓
截得的弦長;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓![]()
的離心率為
,定點(diǎn)
,橢圓短軸的端點(diǎn)是
,
,且
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)過點(diǎn)
且斜率不為
的直線交橢圓
于
,
兩點(diǎn).試問
軸上是否存在定點(diǎn)
,使
平分
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
分別是橢圓的
左,右焦點(diǎn)。
(Ⅰ)若
是第一象限內(nèi)該橢圓上的一點(diǎn),且![]()
,求點(diǎn)
的坐標(biāo)。
(Ⅱ)設(shè)過定點(diǎn)
的直線與橢圓交于不同的兩點(diǎn)
,且
為銳角(其中O為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸,且拋物線
的焦點(diǎn)是它的一個(gè)焦點(diǎn),又點(diǎn)
在該橢圓上.
(1)求橢圓
的方程;
(2)若斜率為
直線
與橢圓
交于不同的兩點(diǎn)
,當(dāng)
面積的最大值時(shí),求直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com