中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設集合A={a|f(x)=x3-ax},且f(x)為增函數,則A=( )
A.{a|-1<a}
B.{a|a≥0}
C.{a|-1≤a<1}
D.{a|a≤0}
【答案】分析:本題是要求出函數為增函數時參數a的取值范圍,即解出集合A,可以借助導數來求得參數的取值范圍.
解答:解:∵f(x)=x3-ax,∴f'(x)=x2-a,
又f(x)為增函數,故有f'(x)=x2-a≥0
即x2≥a恒成立
又x∈R,故x2≥0
所以a≤0
故應選D.
點評:本題考點是函數的單調性的判斷與證明,考查導數大于等于0恒成立來求參數的值,本題出題方式新穎,把集合與導數,及函數的單調性結合起來考查,有新意.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設集合A={a|f(x)=
1
3
x3-ax},且f(x)為增函數,則A=(  )
A、{a|-1<a}
B、{a|a≥0}
C、{a|-1≤a<1}
D、{a|a≤0}

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合A={a,a2,b2-1},B={0,|a|,b},且A=B.
(1)求a,b的值;
(2)求函數f(x)=-bx-
ax
的單調遞增區間,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合A={x|0≤x≤6},B={y|0≤y≤2},下列對應關系中不是從集合A到集合B的函數的是(  )
A、f:x→y=
1
2
x
B、f:x→y=
1
3
x
C、f:x→y=
1
4
x
D、f:x→y=
1
5
x

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)定義:設集合AB,如果按照某種對應法則f,對于集合A中的     ,在集合B     ,這樣的對應叫做     的映射,記作f:A→B.?

(2)象和原象:如果給定一個從集合A到集合B的映射,那么和A的元素a對應的     的元素b叫做a的象,a叫做b的原象.?

(3)一一映射:設AB是兩個集合,f: AB是集合A到集合B的映射,如果在這個映射下,對于集合A的不同元素,在集合B中有     的象,而且B中的每一個元素都有     ,那么這個映射叫做AB的一一映射.

查看答案和解析>>

同步練習冊答案