已知{an}為等差數(shù)列,且a2=-1,a5=8.
(1)求數(shù)列{|an|}的前n項(xiàng)和;
(2)求數(shù)列{2n·an}的前n項(xiàng)和.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列
的前n項(xiàng)和,若Tn≤
¨對(duì)
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前n項(xiàng)和![]()
(1)求數(shù)列
的通項(xiàng)公式,并證明
是等差數(shù)列;
(2)若
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)無(wú)窮數(shù)列
的首項(xiàng)
,前
項(xiàng)和為
(
),且點(diǎn)
在直線
上(
為與
無(wú)關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列
(
)為等比數(shù)列;
(2)記數(shù)列
的公比為
,數(shù)列
滿足
,設(shè)
,求數(shù)列
的前
項(xiàng)和
;
(3)(理)若(1)中無(wú)窮等比數(shù)列
(
)的各項(xiàng)和存在,記
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′
=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2
,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和為
,數(shù)列
滿足:![]()
。
(1)求數(shù)列
的通項(xiàng)公式
;
(2)求數(shù)列
的通項(xiàng)公式
;
(3)若
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
、
的每一項(xiàng)都是正數(shù),
,
,且
、
、
成等差數(shù)列,
、
、
成等比數(shù)列,
.
(Ⅰ)求
、
的值;
(Ⅱ)求數(shù)列
、
的通項(xiàng)公式;
(Ⅲ)記
,證明:對(duì)一切正整數(shù)
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列
的前
項(xiàng)和,給出如下兩個(gè)命題上:
命題
:
是等差數(shù)列;命題
:等式
對(duì)任意
(
)恒成立,其中
是常數(shù)。
⑴若
是
的充分條件,求
的值;
⑵對(duì)于⑴中的
與
,問(wèn)
是否為
的必要條件,請(qǐng)說(shuō)明理由;
⑶若
為真命題,對(duì)于給定的正整數(shù)
(
)和正數(shù)M,數(shù)列
滿足條件
,試求
的最大值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com