設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4.
(1)求{an}的通項(xiàng)公式.
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求{an+bn}的前n項(xiàng)和Sn.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列
中,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列
的前
項(xiàng)和
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的各項(xiàng)均為正數(shù),記
,
,
.
(1)若
,且對(duì)任意
,三個(gè)數(shù)
組成等差數(shù)列,求數(shù)列
的通項(xiàng)公式.
(2)證明:數(shù)列
是公比為
的等比數(shù)列的充分必要條件是:對(duì)任意
,三個(gè)數(shù)
組成公比為
的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在無窮數(shù)列
中,
,對(duì)于任意
,都有
,
. 設(shè)
, 記使得
成立的
的最大值為
.
(1)設(shè)數(shù)列
為1,3,5,7,
,寫出
,
,
的值;
(2)若
為等差數(shù)列,求出所有可能的數(shù)列
;
(3)設(shè)
,
,求
的值.(用
表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}中,a1=2,an=2-
(n≥2,n∈N*).
(1)設(shè)bn=
,n∈N*,求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=
(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
滿足
.
(1)求
的通項(xiàng)公式;
(2)求
的前
項(xiàng)和
;
(3)若
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前n項(xiàng)和為
,存在常數(shù)A,B,C,使得
對(duì)任意正整數(shù)n都成立.
⑴若數(shù)列
為等差數(shù)列,求證:3A B+C=0;
⑵若
設(shè)
數(shù)列
的前n項(xiàng)和為
,求
;
⑶若C=0,
是首項(xiàng)為1的等差數(shù)列,設(shè)
數(shù)列
的前2014項(xiàng)和為P,求不超過P的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列
滿足:
, ![]()
(1)求通項(xiàng)
;
(2)若數(shù)列
滿足
,求數(shù)列
的前
和.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com