中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=m-e-nx(m,n∈R)
(1)若f(x)在點x=0處的切線方程為y=x,求m,n的值.
(2)在(1)條件下,設x≥0且
x
x+a
有意義時,恒有f(x)≥
x
x+a
成立
,求a的取值范圍.
分析:(1)利用f(0)=1,f(0)=0即可求出;
(2)通過對a分類討論,利用研究函數的單調性即可求出.
解答:解:(1)∵函數f(x)=m-e-nx,∴f(x)=ne-nx,∴f(0)=n=1,
當x=0時,y=0,∴切點為(0,0).
∴f(0)=0=m-1,解得m=1.
∴m=n=1.
(2)①當a=0時,f(x)=1-e-x<1與已知矛盾;
②當a<0時,f(x)≥
x
x+a
,x≥0,可變形為e-x
a
x+a

x∈(-a,+∞),0<e-x<1,
a
x+a
<0

此時e-x
a
x+a
e-x
a
x+a
矛盾
,因此應舍去;
③當a>0時,不等式1-e-x
x
x+a
等價轉化為ex-
x
a
-1≥
0,
h(x)=ex-
x
a
-1
,則h′(x)=ex-
1
a

0<
1
a
≤1
,即a≥1時,h(x)≥0,f(x)單調遞增,
∴h(x)≥h(0)=0,∴f(x)≥
x
x+a
恒成立;
1
a
>1
,即0<a<1時,令h′(x)=0,解得x=ln
1
a

當時,x∈(0,ln
1
a
)
,h(x)<0,h(x)單調遞減,此時h(x)<h(0)=0,與h(x)≥0矛盾.
綜上所述:a的取值范圍為{a|a≥1}.
點評:熟練掌握利用導數研究函數的單調性、分類討論的思想方法及導數的幾何意義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
m
=(2cosx,-
3
sin2x)
n
=(cosx,1),設函數f(x)=
m
n
,x∈R.
(Ⅰ)求函數f(x)的最小正周期和單調遞減區間;
(Ⅱ)若方程f(x)-k=0在區間[0,
π
2
]
上有實數根,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=m-
13x+1
(x∈R):
(1)判斷并證明函數f(x)的單調性
(2)是否存在實數m使函數f(x)為奇函數?

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
m
n
,其中
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期和單調遞減區間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2,b=1△ABC的面積為
3
2
,求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=m(1+sin2x)+cos2x,x∈R,且函數y=f(x)的圖象經過點(
π4
,2).
(1)求實數m的值;
(2)求函數f(x)的最小值及此時x值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
m
n
,其中
m
=(cosx,
3
sin2x),
n
=(2cosx,1).
(1)求函數f(x)的單調增區間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,f(A)=2,a=
3
,b+c=3,求△ABC的面積.

查看答案和解析>>

同步練習冊答案