中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
17、設a為實數,函數f(x)=x2+|x-a|+1,x∈R.
(Ⅰ)若f(x)是偶函數,試求a的值;
(Ⅱ)求證:無論a取任何實數,函數f(x)都不可能是奇函數.
分析:(I)根據偶函數的定義建立恒等式f(-x)=f(x)在R上恒成立,從而求出a的值即可;
(II)利用反證法進行證明,先假設存在實數a,使函數f(x)是奇函數,則f(-x)=-f(x)在R上恒成立,求出f(0)=0,但無論a取何實數,f(0)=|a|+1>0,與f(0)=0矛盾.從而矛盾說明,假設是錯誤的,最后肯定結論.
解答:解:(Ⅰ)∵f(x)是偶函數,∴f(-x)=f(x)在R上恒成立,
即(-x)2+|-x-a|+1=x2+|x-a|+1,
化簡整理,得ax=0在R上恒成立,(3分)
∴a=0.(5分)
(Ⅱ)證明:用反證法.假設存在實數a,使函數f(x)是奇函數,
則f(-x)=-f(x)在R上恒成立,∴f(0)=-f(0),∴f(0)=0,
但無論a取何實數,f(0)=|a|+1>0,與f(0)=0矛盾.
矛盾說明,假設是錯誤的,所以無論a取任何實數,函數f(x)不可能是奇函數.
點評:本題主要考查了函數奇偶性的應用,以及反證法的思想,同時考查了計算的能力,屬于綜合題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a為實數,函數f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a為實數,函數f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函數,試求a的值;
(2)在(1)的條件下,求f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a為實數,函數f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函數的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數學 來源: 題型:

設a為實數,函數f(x)=ex-2x+2a,x∈R.求f(x)的單調區間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a為實數,函數f(x)=x3+ax2+(a-2)x的導函數是f'(x)是偶函數,則曲線y=f(x)在原點處的切線方程為
y=-2x
y=-2x

查看答案和解析>>

同步練習冊答案