(本題滿分13分)
設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線
:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點(diǎn)Q,求證:直線
過定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).
(Ⅰ)
.(Ⅱ)(i)
.(ii)直線過定點(diǎn)
.
解析試題分析:(Ⅰ)設(shè)點(diǎn)
,
,則由題意知
.
由
,
,且
,
得
.
所以
于是![]()
又
,所以
.
所以,點(diǎn)M的軌跡C的方程為
.……………………(3分)
(Ⅱ)設(shè)
,
.
聯(lián)立![]()
得
.
所以,
,即
. ①
且
………………………………(5分)
(i)依題意,
,即
.
.
,即
.
,
,解得
.
將
代入①,得
.
所以,
的取值范圍是
. ……………………(8分)
(ii)曲線
與
軸正半軸的交點(diǎn)為
.
依題意,
, 即
.
于是
.![]()
,即
,
.
化簡,得
.
解得,
或
,且均滿足
.
當(dāng)
時(shí),直線
的方程為
,直線過定點(diǎn)
(舍去);
當(dāng)
時(shí),直線
的方程為
,直線過定點(diǎn)
.
所以,直線過定點(diǎn)
. ………………………………(13分)
考點(diǎn):本題主要考查軌跡方程的求法,直線與橢圓的位置關(guān)系。
點(diǎn)評:求曲線的軌跡方程是解析幾何的基本問題,本題利用相關(guān)點(diǎn)法求軌跡方程,相關(guān)點(diǎn)法 根據(jù)相關(guān)點(diǎn)所滿足的方程,通過轉(zhuǎn)換而求動(dòng)點(diǎn)的軌跡方程.本題較難。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,點(diǎn)
與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于
.![]()
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)直線AP和BP分別與直線
交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)直線
與直線
交于
點(diǎn).
(1)當(dāng)直線
過
點(diǎn),且與直線
垂直時(shí),求直線
的方程;
(2)當(dāng)直線
過
點(diǎn),且坐標(biāo)原點(diǎn)
到直線
的距離為
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
(1)焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為A(2,0),其長軸長是短軸長的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是
,并經(jīng)過點(diǎn)
,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
( 本小題滿分12分)如圖所示,已知圓
為圓上一動(dòng)點(diǎn),點(diǎn)
在
上,點(diǎn)
在
上,且滿足
的軌跡為曲線
。![]()
求曲線
的方程;
若過定點(diǎn)F(0,2)的直線交曲線
于不同的兩點(diǎn)
(點(diǎn)
在點(diǎn)
之間),且滿足
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓
及直線
.
(1)當(dāng)
為何值時(shí),直線與橢圓有公共點(diǎn)?
(2)若直線被橢圓截得的弦長為
,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知過點(diǎn)
的動(dòng)直線
與拋物線
相交于
兩點(diǎn),當(dāng)直線
的斜率是
時(shí),
。
(1)求拋物線
的方程;(5分)
(2)設(shè)線段
的中垂線在
軸上的截距為
,求
的取值范圍。(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)的離心率
,直線
與橢圓
交于不同的兩點(diǎn)
,以線段
為直徑作圓
,圓心為![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)當(dāng)圓
與
軸相切的時(shí)候,求
的值;
(Ⅲ)若
為坐標(biāo)原點(diǎn),求
面積的最大值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com