(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.![]()
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.
(1)
;
(2)
;(3)最小值為
。
解析試題分析:(1)由題意
,正三棱臺高為
..2分
..4分
(2)設
分別是上下底面的中心,
是
中點,
是
中點.以
為原點,過
平行
的線為
軸建立空間直角坐標系
.
,
,
,
,
,
,
,![]()
設平面
的一個法向量
,則
即![]()
取
,取平面
的一個法向
量
,設所求角為![]()
則
..8分
(3)將梯形
繞
旋轉到
,使其與
成平角![]()
![]()
,由余弦定理得![]()
即
的最小值為
..13分
考點:本題主要考查立體幾何中的體積計算、角的計算。
點評:中檔題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。利用向量則簡化了證明過程,對計算能力要求高。
科目:高中數學 來源: 題型:解答題
如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F為CD中點.![]()
(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點,AE=3,正方形ABCD的邊長為
.![]()
(1)求證:平面ABCD丄平面ADE;
(2)求四面體BADE的體積;
(3)試判斷直線OB是否與平面CDE垂直,并請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,矩形ABCD中,AB=3,BC=4.E,F分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.![]()
(1)求證:NC∥平面MFD;
(2)若EC=3,求證:ND⊥FC;
(3)求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如下圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.![]()
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四邊形
中,
,
,點
為線段
上的一點.現將
沿線段
翻折到
(點
與點
重合),使得平面![]()
平面
,連接
,
.![]()
(Ⅰ)證明:
平面
;
(Ⅱ)若
,且點
為線段
的中點,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE=
BB1,C1F=
CC1.![]()
(1)求異面直線AE與A1 F所成角的大小;
(2)求平面AEF與平面ABC所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com