已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點.![]()
(Ⅰ)求異面直線CC1和AB的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
(Ⅰ)
; (Ⅱ)
.
解析試題分析:(Ⅰ) 在直三棱柱ABC-A1B1C1中, AC=BC=3,D為AB的中點,易知CD⊥AB.又側棱垂直底面,從而有CC1⊥CD,即CD為異面直線CC1和AB的距離,計算其長度即可;(Ⅱ)易證CD垂直于側面,從而CD⊥DA1,CD⊥DB1,故∠A1DB1為所求的二面角A1-CD-B1的平面角.再根據相關條件求出△A1DB1各邊,從而利用余弦定理求出所求角的余弦值即可.
試題解析:(Ⅰ)因AC=BC,D為AB的中點,故CD⊥AB.
又直三棱柱中,CC1⊥面ABC,故CC1⊥CD,所以異面直線CC1和AB的距離為CD=
=
.
5分
(Ⅱ)由CD⊥AB,CD⊥BB1,故CD⊥面A1ABB1,從而CD⊥DA1,CD⊥DB1,故∠A1DB1為所求的二面角A1-CD-B1的平面角. 8分
又CD⊥
,AB1⊥A1C,所以AB1⊥平面
,從而
,
都與
互余,因此
,所以
∽
,因此
=
,得
.從而A1D=
=2
,B1D=A1D=2
,
所以在△A1DB1中,由余弦定理得
. 12分
考點:1.異面直線的距離;2.直線與平面垂直的判定與性質;3.二面角.
科目:高中數學 來源: 題型:解答題
如圖四棱錐
中,底面
是平行四邊形,
平面
,垂足為
,
在
上且
,
,
,
是
的中點,四面體
的體積為
.![]()
(1)求過點P,C,B,G四點的球的表面積;
(2)求直線
到平面
所成角的正弦值;
(3)在棱
上是否存在一點
,使![]()
![]()
,若存在,確定點
的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC的中點.![]()
(1)證明:PA//平面BGD;
(2)求直線DG與平面PAC所成的角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在長方體
中,
為線段
中點.![]()
(1)求直線
與直線
所成的角的余弦值;
(2)若
,求二面角
的大小;
(3)在棱
上是否存在一點
,使得
平面
?若存在,求
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱錐
中,面![]()
面
,底面
是直角梯形,側面
是等腰直角三角形.且
∥
,
,
,
.![]()
(1)判斷
與
的位置關系;
(2)求三棱錐
的體積;
(3)若點
是線段
上一點,當
//平面
時,求
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com