如圖四棱錐
中,底面
是平行四邊形,
平面
,垂足為
,
在
上且
,
,
,
是
的中點(diǎn),四面體
的體積為
.![]()
(1)求過(guò)點(diǎn)P,C,B,G四點(diǎn)的球的表面積;
(2)求直線
到平面
所成角的正弦值;
(3)在棱
上是否存在一點(diǎn)
,使![]()
![]()
,若存在,確定點(diǎn)
的位置,若不存在,說(shuō)明理由.
(1)
;(2)
;(3)存在,
.
解析試題分析:(1)首先由四面體
的體積可以求出高
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/1/ysbk72.png" style="vertical-align:middle;" />兩兩垂直,所以以
為同一頂點(diǎn)的三條棱構(gòu)造長(zhǎng)方體,長(zhǎng)方體的外接球即為過(guò)點(diǎn)P,C,B,G四點(diǎn)的球,其直徑就是長(zhǎng)方體的體對(duì)角線.
(2)由于面
面
,所以只需在面ABCD內(nèi)過(guò)點(diǎn)D作交線BG的垂線,即可得PD在面PBG內(nèi)的射影,從而得PD與面PBG所成的角. (3)首先假設(shè)
存在,然后確定
的位置,若能在
上找到點(diǎn)
使![]()
![]()
則說(shuō)明這樣的點(diǎn)F存在.
與
是異面的兩條直線,我們通過(guò)轉(zhuǎn)化,轉(zhuǎn)化這相交的兩條直線的垂直問(wèn)題.那么如何轉(zhuǎn)化?過(guò)
作![]()
交GC于
,則只要
即可.這樣確定
的位置容易得多了.
試題解析:(1)由四面體
的體積為
.∴
.
以
構(gòu)造長(zhǎng)方體,外接球的直徑為長(zhǎng)方體的體對(duì)角線。
∴
∴![]()
∴
3分
(2)由![]()
∴
為等腰三角形,GE為
的角平分線,作
交BG的延長(zhǎng)線于K,
∴![]()
由平面幾何知識(shí)可知:
,
.設(shè)直線
與平面
所成角為![]()
∴
8分
(3)假設(shè)
存在,過(guò)
作![]()
交GC于
,則必有
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/18/d/1grpg3.png" style="vertical-align:middle;" />,且
,所以
,又
.![]()
∴當(dāng)
時(shí)滿足條件 12分
考點(diǎn):1、多面體的外接球及其表面積;2、線線與平面所成的角;3、異面直線的垂直.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐
,底面
為平行四邊形,側(cè)面
底面
.已知
,
,
,
為線段
的中點(diǎn).![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求面
與面
所成二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC—A1B1C1中,
,直線B1C與平面ABC成45°角.![]()
(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱
的底面
是平行四邊形,且
底面
,
,
,
°,點(diǎn)
為
中點(diǎn),點(diǎn)
為
中點(diǎn).![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)二面角
的大小為
,直線
與平面
所成的角為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=
,且AB=2AD=2DC=2PD=4,E為PA的中點(diǎn).![]()
(1)證明:DE∥平面PBC;
(2)證明:DE⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).![]()
(Ⅰ)求異面直線CC1和AB的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱錐
中,
是邊長(zhǎng)為2的正三角形,平面
平面
,
,
分別為
的中點(diǎn).![]()
(1)證明:
;
(2)求銳二面角
的余弦值;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com