(本小題滿分14分)設(shè)二次函數(shù)
滿足下列條件:
①當(dāng)
∈R時(shí),
的最小值為0,且f (
-1)=f(-
-1)成立;
②當(dāng)
∈(0,5)時(shí),
≤
≤2
+1恒成立。
(1)求
的值;
(2)求
的解析式;
(3)求最大的實(shí)數(shù)m(m>1),使得存在實(shí)數(shù)t,只要當(dāng)
∈
時(shí),就有
成立。
解: (1)在②中令x=1,有1≤f(1)≤1,故f(1)=1…………………………3分
(2)由①知二次函數(shù)的關(guān)于直線x=-1對稱,且開口向上
故設(shè)此二次函數(shù)為f(x)=a(x+1)2,(a>0),∵f(1)=1,∴a=![]()
∴f(x)=
(x+1)2 …………………………7分
(3)假設(shè)存在t∈R,只需x∈[1,m],就有f(x+t)≤x.
f(x+t)≤x![]()
(x+t+1)2≤x
x2+(2t-2)x+t2+2t+1≤0.
令g(x)=x2+(2t-2)x+t2+2t+1,g(x)≤0,x∈[1,m].![]()
∴m≤1-t+2
≤1-(-4)+2
=9
t=-4時(shí),對任意的x∈[1,9]
恒有g(shù)(x)≤0, ∴m的最大值為9. ………………………… 14分
解析
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知二次函數(shù)
=
,且不等式
的解集為![]()
(1)求
的解析式
(2)若不等式
對于
恒成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若定義在
上的奇函數(shù)
滿足當(dāng)
時(shí),
.
(1)求
在
上的解析式;
(2)判斷
在
上的單調(diào)性,并給予證明;
(3)當(dāng)
為何值時(shí),關(guān)于方程
在
上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3 000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3 600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知函數(shù)
.
(1)若f(x
)關(guān)于原點(diǎn)對稱,求a的值;
(2)在(1)下,解關(guān)于x的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知
的反函數(shù)為
,
.
(1)若
,求
的取值范圍D;
(2)設(shè)函數(shù)
,當(dāng)
時(shí),求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某化工廠生產(chǎn)一種溶液,按市場要求,雜質(zhì)含量不能超過0.1%,若初時(shí)含雜質(zhì)2%,每過濾一次減少
,問過濾幾次
才能使產(chǎn)品達(dá)到市場要求?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com