已知函數(shù)![]()
①當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程。
②求
的單調(diào)區(qū)間
(I)
;
(II)
得單調(diào)遞增區(qū)間是
和
,單調(diào)遞減區(qū)間是![]()
解析試題分析:(I)當(dāng)
時(shí),
,![]()
由于
,
,
所以曲線
在點(diǎn)
處的切線方程為
, 即 ![]()
(II)
,
.
①當(dāng)
時(shí),
.
所以,在區(qū)間
上
;在區(qū)間
上
.
故
得單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
。
② 當(dāng)
時(shí),由
,得
,![]()
所以,在區(qū)間
和
上,
;在區(qū)間
上,![]()
故
得單調(diào)遞增區(qū)間是
和
,單調(diào)遞減區(qū)間是
.
③當(dāng)
時(shí),
,故
得單調(diào)遞增區(qū)間是
.
④當(dāng)
時(shí),
,得
,
.
所以在區(qū)間
和
上
,;在區(qū)間
上,![]()
故
得單調(diào)遞增區(qū)間是
和
,單調(diào)遞減區(qū)間是![]()
考點(diǎn):本題主要考查導(dǎo)數(shù)計(jì)算及其幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評:典型題,在給定區(qū)間,導(dǎo)數(shù)值非負(fù),函數(shù)是增函數(shù),導(dǎo)數(shù)值為非正,函數(shù)為減函數(shù)。求極值的步驟:計(jì)算導(dǎo)數(shù)、求駐點(diǎn)、討論駐點(diǎn)附近導(dǎo)數(shù)的正負(fù)、確定極值。切線的斜率為函數(shù)在切點(diǎn)的導(dǎo)數(shù)值。本題涉及到了對數(shù)函數(shù),要特別注意函數(shù)定義域。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是函數(shù)
的一個(gè)極值點(diǎn)。
(1)求
與
的關(guān)系式(用
表示
),并求
的單調(diào)區(qū)間;
(2)設(shè)
,若存在
,使得
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,且對任意的實(shí)數(shù)
都有
成立.
(1)求實(shí)數(shù)
的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)
在區(qū)間
上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x|x-2|.
(1)寫出f(x)的單調(diào)區(qū)間; (2)解不等式f(x)<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 已知
為實(shí)數(shù),
,
(1)若
,求
的單調(diào)區(qū)間;
(2)若
,求
在[-2,2] 上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)![]()
(1)判斷函數(shù)
的奇偶性;
(2)若
在區(qū)間
是增函數(shù),求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共10分)
已知函數(shù)![]()
(1)解關(guān)于
的不等式
;
(2)若函數(shù)
的圖象恒在函數(shù)
圖象的上方(沒有公共點(diǎn)),求
的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com