直三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).![]()
(1)求證:直線AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.
(1)證明過程詳見試題解析;(2)二面角A-A1D-B正弦值為
.
解析試題分析:(1)建立如下圖的空間坐標(biāo)系,要證直線AB1⊥平面A1BD,只需證明![]()
即可.(2)先求出平面A1AD的一個(gè)法向量
,再用向量夾角公式求二面角A-A1D-B正弦值.
試題解析:(1)取BC中點(diǎn)O,連接AO,
∵△ABC為正三角形,∴AO⊥BC,
∵直棱柱ABC-A1B1C1,∴平面ABC⊥平面BCC1B1且相交于BC,
∴AO⊥平面BCC1B1.取B1C1中點(diǎn)O1,則OO1∥BB1,∴OO1⊥BC.
以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系O-xyz,![]()
則B(1,0,0),D(-1,1,0),A1(0,2,
)A(0,0,
),B1(1,2,0),C(-1,0,0),
∴![]()
![]()
∴直線AB1⊥平面A1BD. 6分
(2)設(shè)平面A1AD的一個(gè)法向量為
n=(x,y,z).![]()
∵![]()
∴
令z=1得n=(-
,0,1)為平面A1AD的一個(gè)法向量.
由(1)知
為平面A1BD的法向量.
∴![]()
∴二面角A-A1D-B正弦值的大小為
. 12分
考點(diǎn):空間向量、直線與平面的位置關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M,RQ,DB的延長線交于N,RP,DC的延長線交于K,![]()
求證:M,N,K三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中點(diǎn),E是棱AA1上任意一點(diǎn).![]()
(1)證明:BD⊥EC1;
(2)如果AB=2,AE=
,OE⊥EC1,求AA1的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD為正方形,
為直角三角形,
,且
.![]()
(1)證明:平面
平面
;
(2)若AB=2AE,求異面直線BE與AC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四邊形
與
都是邊長為
的正方形,點(diǎn)E是
的中點(diǎn),
平面![]()
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求三棱錐A—BDE的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形
中,點(diǎn)
為邊
上的點(diǎn),點(diǎn)
為邊
的中點(diǎn),
,現(xiàn)將
沿
邊折至
位置,且平面
平面
.![]()
(1) 求證:平面
平面
;
(2) 求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐S—ABC中,SC⊥平面ABC,點(diǎn)P、M分別是SC和SB的中點(diǎn),設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°。![]()
(1)求證:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知
是圓的直徑,
垂直圓所在的平面,
是圓上任一點(diǎn),
是線段
的中點(diǎn),
是線段
上的一點(diǎn).![]()
求證:(Ⅰ)若
為線段
中點(diǎn),則
∥平面
;
(Ⅱ)無論
在
何處,都有
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com