直線
與拋物線
交于兩點A、B,如果弦
的長度
.
⑴求
的值;
⑵求證:
(O為原點)。
科目:高中數學 來源: 題型:解答題
已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(2)設C、D為直線l1、l2與直線x = 4的交點,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為
.
(1)求橢圓C的方程;
(2)設A,B是橢圓C上的兩點,△AOB的面積為
.若A、B兩點關于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果
=t
,求實數t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知圓E
,點
,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡
的方程;
(2)點
,
,點G是軌跡
上的一個動點,直線AG與直線
相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結論.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
,過點
且離心率為
.
求橢圓
的方程;
已知
是橢圓
的左右頂點,動點
滿足
,連接
角橢圓于點
,在
軸上是否存在異于點
的定點
,使得以
為直徑的圓經過直線
和直線
的交點,若存在,求出
點,若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的右焦點為
,短軸的一個端點
到
的距離等于焦距.
(1)求橢圓
的方程;
(2)過點
的直線
與橢圓
交于不同的兩點
,
,是否存在直線
,使得△
與△
的面積比值為
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知頂點為原點
的拋物線
的焦點
與橢圓
的右焦點重合,
與
在第一和第四象限的交點分別為
.
(1)若
是邊長為
的正三角形,求拋物線
的方程;
(2)若
,求橢圓
的離心率
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線C的頂點在原點,開口向右,過焦點且垂直于拋物線對稱軸的弦長為2,過C上一點A作兩條互相垂直的直線交拋物線于P,Q兩點. ![]()
(1)若直線PQ過定點
,求點A的坐標;
(2)對于第(1)問的點A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個數;若不能,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com