(本小題滿分14分)
在四棱錐
中,
//
,
,
,
平面
,
. ![]()
(Ⅰ)設平面
平面
,求證:
//
;
(Ⅱ)求證:
平面
;
(Ⅲ)設點
為線段
上一點,且直線
與平面
所成角的正弦值為
,求
的值.
(1)主要根據
,那么得到線線平行。
(2)建立空間直角坐標系,然后借助于直線的方向向量和平面的法向量平行來表示證明。
(3) ![]()
解析試題分析:(1)
,![]()
又面
,
———————————4分
(2)以
點為坐標原點,
為
軸,
軸,
軸建立空間直角坐標系。
則
————————7分![]()
即![]()
,即
,又![]()
————————————————————————————9分
(3)由(2)得,
是面
的一個法向量,——————————————11分
設
,則
,![]()
則![]()
————————————————————————————————14分
考點:線面平行,線面垂直
點評:對于空間中的平行和垂直的證明,以及角的求解是立體幾何重點考查的題型之一,通常可以用幾何法或向量法來得到。屬于中檔題。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F在棱AC上,且AF=3FC.![]()
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一個多面體的直觀圖和三視圖如圖所示,其中
、
分別是
、
的中點,
是
上的一動點,主視圖與俯視圖都為正方形。![]()
![]()
⑴求證:
;
⑵當
時,在棱
上確定一點
,使得
∥平面
,并給出證明。
⑶求二面角
的平面角余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,矩形
所在平面與平面
垂直,
,且
,
為
上的動點.![]()
(Ⅰ)當
為
的中點時,求證:
;
(Ⅱ)若
,在線段
上是否存在點E,使得二面角
的大小為
. 若存在,確定點E的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖1,在等腰梯形
中,
,
,
,
為
上一點,
,且
.將梯形
沿
折成直二面角
,如圖2所示.![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設點
關于點
的對稱點為
,點
在
所在平面內,且直線
與平面
所成的角為
,試求出點
到點
的最短距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點。![]()
(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在四棱錐
中,底面
是直角梯形,
∥
,∠
,
,平面
⊥平面
.![]()
(1)求證:
⊥平面
;
(2)求平面
和平面
所成二面角(小于
)的大小;
(3)在棱
上是否存在點
使得
∥平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com