拋物線
,直線
過拋物線
的焦點(diǎn)
,交
軸于點(diǎn)
.![]()
(1)求證:
;
(2)過
作拋物線
的切線,切點(diǎn)為
(異于原點(diǎn)),
(ⅰ)
是否恒成等差數(shù)列,請說明理由;
(ⅱ)
重心的軌跡是什么圖形,請說明理由.
(1) 即證
(2) 能 拋物線![]()
解析試題分析:(1)由于點(diǎn)F的坐標(biāo)已知,所以可假設(shè)直線AB的方程(依題意可得直線AB的斜率存在).寫出點(diǎn)P的坐標(biāo),聯(lián)立直線方程與拋物線方程消去y,即可得到一個(gè)關(guān)于x的一元二次方程,寫出韋達(dá)定理,再根據(jù)欲證
轉(zhuǎn)化為點(diǎn)的坐標(biāo)關(guān)系.
(2)(ⅰ)根據(jù)提議分別寫出
,結(jié)合韋達(dá)定理驗(yàn)證
是否成立.
(ⅱ)由三角形重心的坐標(biāo)公式,結(jié)合韋達(dá)定理,消去參數(shù)k即可得到重心的軌跡.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/3/v3nx8.png" style="vertical-align:middle;" />,所以假設(shè)直線AB為
,
,所以點(diǎn)
.聯(lián)立
可得,
,所以
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/59/d/4akn4.png" style="vertical-align:middle;" />,
.所以
.
(2)(ⅰ)設(shè)
,
的導(dǎo)數(shù)為
.所以可得
,即可得
.即得
.
.![]()
![]()
.所以可得
即
是否恒成等差數(shù)列.
(ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/6/1wqhq3.png" style="vertical-align:middle;" />重心的坐標(biāo)為
由題意可得
.即
,
消去k可得
.
考點(diǎn):1.拋物線的性質(zhì).2.解方程的思想.3.等差數(shù)列的證明.4.三角形的重心的公式.5.運(yùn)算能力.6.分析問題和解決問題的能力、以及等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
,an+1)( n ∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列
滿足b1=1,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
的前
項(xiàng)和為
,公差
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
是首項(xiàng)為1,公比為
的等比數(shù)列,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
, 數(shù)列
滿足
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
,若
對一切
成立,求最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知集合
,![]()
具有性質(zhì)
:對任意的![]()
,
至少有一個(gè)屬于
.
(1)分別判斷集合
與
是否具有性質(zhì)
;
(2)求證:①
;
②
;
(3)當(dāng)
或
時(shí)集合
中的數(shù)列
是否一定成等差數(shù)列?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
為等差數(shù)列
的前
項(xiàng)和,已知
.
(1)求
;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和記為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
.已知
,
=an+1-
n2-n-
(
)
(1) 求
的值;
(2) 求數(shù)列
的通項(xiàng)公式;
(3) 證明:對一切正整數(shù)
,有
+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是首項(xiàng)和公比均為
的等比數(shù)列,設(shè)
.![]()
(1)求證數(shù)列
是等差數(shù)列;
(2)求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com