已知函數
,
.
(1)當
時,求
在
處的切線方程;
(2)若
在
內單調遞增,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數
.
(I)若
,求函數
的單調區間;
(Ⅱ)求證:![]()
(Ⅲ)若函數
的圖象在點
處的切線的傾斜角為
,對于任意的
,函數
是
的導函數)在區間
上總不是單調函數,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設
,
.
(Ⅰ)當
時,求曲線
在
處的切線的方程;
(Ⅱ)如果存在
,使得
成立,求滿足上述條件的最大整數
;
(Ⅲ)如果對任意的
,都有
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數k的最小值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是二次函數,不等式
的解集是(0,5),且f(x)在區間[-1,4]上的最大值是12.
(1)求
的解析式;
(2)是否存在自然數m,使得方程
=0在區間(m,m+1)內有且只有兩個不等的實數根?若存在,求出所有m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數
,
.
(Ⅰ)若
,求
的極小值;
(Ⅱ)在(Ⅰ)的結論下,是否存在實常數
和
,使得
和
?若存在,求出
和
的值.若不存在,說明理由.
(Ⅲ)設
有兩個零點
,且
成等差數列,試探究
值的符號.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com