已知
是二次函數(shù),不等式
的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求
的解析式;
(2)是否存在自然數(shù)m,使得方程
=0在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出所有m的值;若不存在,請(qǐng)說(shuō)明理由.
(1)![]()
(2)存在唯一的自然數(shù)m=3,使得方程
在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根.
解析試題分析:(1)為求函數(shù)的解析式,可根據(jù)
是二次函數(shù),且
的解集是(0,5),
設(shè)出
應(yīng)用“待定系數(shù)法”.
(2)首先注意到方程
=0等價(jià)于方程
,從而,可通過(guò)研究函數(shù)
達(dá)到解題目的.
具體地,通過(guò)“求導(dǎo)數(shù)、求駐點(diǎn)、討論導(dǎo)數(shù)的正負(fù)、確定函數(shù)的單調(diào)區(qū)間”,認(rèn)識(shí)方程的根分布情況.
試題解析:
(1)∵
是二次函數(shù),且
的解集是(0,5),
∴可設(shè)
.
∴
在區(qū)間[-1,4]上的最大值是
.
由已知,得
5分
(2)方程
=0等價(jià)于方程![]()
設(shè)![]()
則
. 7分
當(dāng)x∈
時(shí),
,因此
在此區(qū)間上是減少的;
當(dāng)x∈
時(shí),
,因此
是在此區(qū)間上是增加的.
∵h(yuǎn)(3)=1>0,h
=
<0,h(4)=5>0, 10分
∴方程
=0在區(qū)間
,
內(nèi)分別有唯一實(shí)數(shù)根,而在區(qū)間(0,3),(4,+∞)內(nèi)沒有實(shí)數(shù)根,
∴存在唯一的自然數(shù)m=3,使得方程
在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根. 12分
考點(diǎn):待定系數(shù)法,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),試討論
的單調(diào)性;
(Ⅱ)設(shè)
,當(dāng)
時(shí),若對(duì)任意
,存在
,使
,求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若對(duì)一切
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
.
(1)當(dāng)
時(shí),求
在
處的切線方程;
(2)若
在
內(nèi)單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)若
且函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(2)如果當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(Ⅲ)求證:
(
,e是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
是大于零的常數(shù).
(Ⅰ)當(dāng)
時(shí),求
的極值;
(Ⅱ)若函數(shù)
在區(qū)間
上為單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:曲線
上存在一點(diǎn)
,使得曲線
上總有兩點(diǎn)
,且
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)求
的單調(diào)區(qū)間及最大值;
(2)
恒成立,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若
在
處取得極大值,求實(shí)數(shù)
的值;
(2)若
,求
在區(qū)間
上的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com