已知橢圓C的兩個(gè)焦點(diǎn)是(0,-
)和(0,
),并且經(jīng)過(guò)點(diǎn)
,拋物線E的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F恰好是橢圓C的右頂點(diǎn).
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求
的最小值.
(I)橢圓C的標(biāo)準(zhǔn)方程為
;拋物線E的標(biāo)準(zhǔn)方程為
;(Ⅱ)最小值為16.
解析試題分析:(I)由題意得c=
,
,從而
=1,橢圓C的標(biāo)準(zhǔn)方程為
.該橢圓右頂點(diǎn)的坐標(biāo)為(1,0),即拋物線的焦點(diǎn)為(1,0),所以
,拋物線E的標(biāo)準(zhǔn)方程為
.(Ⅱ)設(shè)l1的方程:
,l2的方程
,
,
,
,
.注意
,且它們交于點(diǎn)
,所以可將
作如下變形:
=
=|
|·|
|+|
|·|
|,這樣先將|
|·|
|+|
|·|
|用
表示出來(lái),再利用韋達(dá)定理用
表示,從而求得其最小值.
試題解析:(I)設(shè)橢圓的標(biāo)準(zhǔn)方程為
(a>b>0),焦距為2c,
則由題意得c=
,
,
∴a=2,
=1,
∴橢圓C的標(biāo)準(zhǔn)方程為
. 4分
∴右頂點(diǎn)F的坐標(biāo)為(1,0).
設(shè)拋物線E的標(biāo)準(zhǔn)方程為
,
∴
,
∴拋物線E的標(biāo)準(zhǔn)方程為
. 6分
(Ⅱ)設(shè)l1的方程:
,l2的方程
,
,
,
,
,
由
消去y得:
,
∴ x1+x2=2+
,x1x2=1.
由
消去y得:x2-(4k2+2)x+1=0,
∴x3+x4=4k2+2,x3x4=1, 9分
∴![]()
=![]()
=|
|·|
|+|
|·|
|
=|x1+1|·|x2+1|+|x3+1|·|x4+1|
=(x1x2+x1+x2+1)+(x3x4+x3+x4+1)
=8+![]()
≥8+![]()
=16.
當(dāng)且僅當(dāng)
即k=±1時(shí),
有最小值16. 13分
考點(diǎn):1、橢圓與拋物線;2、直線與圓錐曲線.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)
,曲線C是使
為定值的點(diǎn)
的軌跡,曲線
過(guò)點(diǎn)
.
(1)求曲線
的方程;
(2)直線
過(guò)點(diǎn)
,且與曲線
交于
,當(dāng)
的面積取得最大值時(shí),求直線
的方程;
(3)設(shè)點(diǎn)
是曲線
上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接
、
,設(shè)
的角平分線
交曲線
的長(zhǎng)軸于點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知點(diǎn)
和
,過(guò)點(diǎn)
的直線
與過(guò)點(diǎn)
的直線
相交于點(diǎn)
,設(shè)直線
的斜率為
,直線
的斜率為
,如果
,求點(diǎn)
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在
中,
的外角平分線
與邊
的延長(zhǎng)線相交于點(diǎn)
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
經(jīng)過(guò)點(diǎn)
,其左、右頂點(diǎn)分別是
、
,左、右焦點(diǎn)分別是
、
,
(異于
、
)是橢圓上的動(dòng)點(diǎn),連接
交直線
于
、
兩點(diǎn),若
成等比數(shù)列.![]()
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段
為直徑的圓過(guò)點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,
)在橢圓上(e為橢圓的離心率).![]()
(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿(mǎn)足
,且
,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
兩焦點(diǎn)坐標(biāo)分別為
,
,一個(gè)頂點(diǎn)為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為
的直線
,使直線
與橢圓
交于不同的兩點(diǎn)
,滿(mǎn)足
. 若存在,求出
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,已知過(guò)點(diǎn)
的橢圓
:
的右焦點(diǎn)為
,過(guò)焦點(diǎn)
且與
軸不重合的直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn)為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點(diǎn).![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
的坐標(biāo)為
,試求直線
的方程;
(3)記
,
兩點(diǎn)的縱坐標(biāo)分別為
,
,試問(wèn)
是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線
:
和⊙
:
,過(guò)拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.![]()
(1)求拋物線
的方程;
(2)當(dāng)
的角平分線垂直
軸時(shí),求直線
的斜率;
(3)若直線
在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中
、
是過(guò)拋物線
焦點(diǎn)
的兩條弦,且其焦點(diǎn)
,
,點(diǎn)
為
軸上一點(diǎn),記
,其中
為銳角.![]()
(1)求拋物線
方程;
(2)如果使“蝴蝶形圖案”的面積最小,求
的大小?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com