中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,其中.
(1)當時,求函數的圖象在點處的切線方程;
(2)如果對于任意,都有,求的取值范圍.

(1);(2).

解析試題分析:(1)將代入函數解析式,求出的值,利用點斜式寫出切線方程;(2)利用參數分離法將轉化為,構造新函數,問題轉化為來求解,但需注意區間端點值的取舍.
試題解析:(1)由,得
所以
又因為
所以函數的圖象在點處的切線方程為
(2)由,得
.
設函數

因為
所以
所以當時,
故函數上單調遞增,
所以當時,
因為對于任意,都有成立,
所以對于任意,都有成立.
所以.
考點:1.導數的幾何意義;2.參數分離法

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某廠生產產品x件的總成本(萬元),已知產品單價P(萬元)與產品件數x滿足:,生產100件這樣的產品單價為50萬元,產量定為多少件時總利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中).
(1)求函數的單調區間;
(2)若函數上有且只有一個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,().
(1)若有最值,求實數的取值范圍;
(2)當時,若存在,使得曲線處的切線互相平行,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若,求函數上的最小值;
(2)若函數存在單調遞增區間,試求實數的取值范圍;
(3)求函數的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)若,求函數的極值點;
(2)若在區間內單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知處取得極值,且在點處的切線斜率為.
⑴求的單調增區間;
⑵若關于的方程在區間上恰有兩個不相等的實數根,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案