一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形
(如圖所示,其中O為圓心,
在半圓上),設(shè)
,木梁的體積為V(單位:m3),表面積為S(單位:m2).![]()
(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求
的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時,其表面積S是否也最大?請說明理由.
(1)
,(2)
,(3)當(dāng)木梁的體積V最大時,其表面積S也最大.
解析試題分析:(1)解答實際問題關(guān)鍵讀懂題意.本題所求體積為直四棱柱體積,體積為高與底面積的乘積.高為圓木的長,底面積為梯形
的面積.利用角
表示出梯形上下底及高,就可得到所求關(guān)系式. (2)先求出函數(shù)的導(dǎo)數(shù)
,再根據(jù)導(dǎo)數(shù)為零時,定義區(qū)間導(dǎo)數(shù)值的正負(fù)討論其單調(diào)性,研究其圖像變化規(guī)律,確定其極值、最值.本題函數(shù)先增后減,在
時,取極大值,也是最大值.(3)本題實質(zhì)是求表面積的最大值,并判斷取最大值時
是否成立.首先先建立表面積的函數(shù)關(guān)系式.表面積由兩部分組成,一是底面積,二是側(cè)面積. 底面積為梯形
的面積,有兩個. 側(cè)面積為梯形
周長與圓木的長的乘積.再利用導(dǎo)數(shù)求出其最大值及取最大值時角的取值.
試題解析:(1)梯形
的面積
=
,
. 2分
體積
. 3分
(2)
.
令
,得
,或
(舍).∵
,∴
. 5分
當(dāng)
時,
,
為增函數(shù);
當(dāng)
時,
,
為減函數(shù). 7分
∴當(dāng)
時,體積V最大. 8分
(3)木梁的側(cè)面積
=
,
.
=
,
. 10分
設(shè)
,
.∵
,
∴當(dāng)
,即
時,
最大. 12分
又由(2)知
時,
取得最大值,
所以
時,木梁的表面積S最大. 13分
綜上,當(dāng)木梁的體積V最大時,其表面積S也最大. 14分
考點:利用導(dǎo)數(shù)求函數(shù)最值
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(e為自然對數(shù)的底數(shù)).
(1)設(shè)曲線
處的切線為
,若
與點(1,0)的距離為
,求a的值;
(2)若對于任意實數(shù)
恒成立,試確定
的取值范圍;
(3)當(dāng)
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項和為
,對一切正整數(shù)
,點
都在函數(shù)
的圖像上,且過點
的切線的斜率為
.
(1)求數(shù)列
的通項公式;
(2)設(shè)
,等差數(shù)列
的任一項
,其中
是
中所有元素的最小數(shù),
,求
的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
.
(1)若
是函數(shù)
的極值點,求實數(shù)
的值;
(2)若對任意的
(
為自然對數(shù)的底數(shù))都有
≥
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上是減函數(shù),求實數(shù)
的取值范圍;
(3)過坐標(biāo)原點
作曲線
的切線,證明:切點的橫坐標(biāo)為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
),其中
.
(1)若曲線
與
在點
處相交且有相同的切線,求
的值;
(2)設(shè)
,若對于任意的
,函數(shù)
在區(qū)間
上的值恒為負(fù)數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在實數(shù)集R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com