中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ln x-
(1)當a>0時,判斷f(x)在定義域上的單調性;
(2)f(x)在[1,e]上的最小值為,求實數a的值;
(3)試求實數a的取值范圍,使得在區間(1,+∞)上函數y=x2的圖象恒在函數y=f(x)圖象的上方.
(1)f(x)在(0,+∞)上是單調遞增函數
(2)a=-    (3)a≥-1
(1)f′(x)=(x>0),
當a>0時,f′(x)>0恒成立,
故f(x)在(0,+∞)上是單調遞增函數.
(2)由f′(x)=0得x=-a,
①當a≥-1時,f′(x)≥0在[1,e]上恒成立,f(x)在[1,e]上為增函數.
f(x)min=f(1)=-a=得a=-(舍).
②當a≤-e時,f′(x)≤0在[1,e]上恒成立,f(x)在[1,e]上為減函數.
則f(x)min=f(e)=1-得a=-(舍).
③當-e<a<-1時,由f′(x)=0得x0=-a.
當1<x<x0時,f′(x)<0,f(x)在(1,x0)上為減函數;
當x0<x<e時,f′(x)>0,f(x)在(x0,e)上為增函數.
∴f(x)min=f(-a)=ln(-a)+1=,得a=-
綜上知:a=-
(3)由題意得:x2>ln x-在(1,+∞)上恒成立,
即a>xln x-x3在(1,+∞)上恒成立.
設g(x)=xln x-x3(x>1),則
g′(x)=ln x-3x2+1.
令h(x)=ln x-3x2+1,則
h′(x)=-6x.
當x>1時,h′(x)<0恒成立.
∴h(x)=g′(x)=ln x-3x2+1在(1,+∞)上為減函數,
則g′(x)<g′(1)=-2<0.
所以g(x)在(1,+∞)上為減函數,
∴g(x)<g(1)<-1,故a≥-1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,其中.
(1)若,求函數的極值點;
(2)若在區間內單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數.若實數a, b滿足, 則 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)當時,求曲線在點處的切線方程;
(2)求函數的單調區間;
(3)若對任意的都有恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數在區間上為單調增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數滿足,設,則的大小關系為( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數y=f(x)在R上可導,且滿足不等式xf′(x)>-f(x)恒成立,且常數a,b滿足a>b,則下列不等式一定成立的是           (  )
A.af(b)>bf(a)B.af(a)>bf(b)
C.af(a)<bf(b)D.af(b)<bf(a)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(2013•浙江)已知a∈R,函數f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

f(x)=x3﹣3x2+2在區間[﹣1,1]上的最大值是(  )
A.﹣2B.0C.2D.4

查看答案和解析>>

同步練習冊答案