已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/0/1klih2.png" style="vertical-align:middle;" />,若
在
上為增函數(shù),則稱
為“一階比增函數(shù)”.
(Ⅰ) 若
是“一階比增函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅱ) 若
是“一階比增函數(shù)”,求證:
,
;
(Ⅲ)若
是“一階比增函數(shù)”,且
有零點(diǎn),求證:
有解.
(Ⅰ)
(Ⅱ)本小題關(guān)鍵是先得到
, ![]()
(Ⅲ)本小題要結(jié)合(Ⅱ)的結(jié)論來證明。
解析試題分析:解:(I)由題
在
是增函數(shù),
由一次函數(shù)性質(zhì)知
當(dāng)
時(shí),
在
上是增函數(shù),
所以
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/1/1hwtp.png" style="vertical-align:middle;" />是“一階比增函數(shù)”,即
在
上是增函數(shù),
又
,有
,![]()
所以
,
所以
,![]()
所以
所以
(Ⅲ)設(shè)
,其中
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/1/1hwtp.png" style="vertical-align:middle;" />是“一階比增函數(shù)”,所以當(dāng)
時(shí),![]()
取
,滿足
,記![]()
由(Ⅱ)知
,同理
,![]()
所以一定存在
,使得
,
所以
一定有解
考點(diǎn):函數(shù)的單調(diào)性
點(diǎn)評:證明函數(shù)
在區(qū)間
上為增(減)函數(shù)的方法是:令
,若![]()
(
),則函數(shù)為增(減)函數(shù)。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)
的圖象與x軸,y軸無交點(diǎn)且關(guān)于原點(diǎn)對稱,又有函數(shù)f(x)=x2-alnx+m-2在(1,2]上是增函數(shù),g(x)=x-
在(0,1)上為減函數(shù).
①求a的值;
②若
,數(shù)列{an}滿足a1=1,an+1=p(an),(n∈N+),數(shù)列{bn},滿足
,
,求數(shù)列{an}的通項(xiàng)公式an和sn.
③設(shè)
,試比較[h(x)]n+2與h(xn)+2n的大小(n∈N+),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
滿足:
(
),
(1)用反證法證明:
不可能為正比例函數(shù);
(2)若
,求
的值,并用數(shù)學(xué)歸納法證明:對任意的
,均有:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是奇函數(shù)。
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)
在R上的單調(diào)性并用定義法證明;
(3)若函數(shù)
的圖像經(jīng)過點(diǎn)
,這對任意
不等式
≤
恒成立,求實(shí)數(shù)m的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
為常數(shù).
(Ⅰ)當(dāng)
時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),求
的極值點(diǎn)并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,函數(shù)
的圖像在點(diǎn)
處的切線平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極小值;
(3)設(shè)斜率為
的直線與函數(shù)
的圖象交于兩點(diǎn)
,(
)
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)若
在區(qū)間
上是減函數(shù),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com