已知橢圓C:
(
)的短軸長為2,離心率為
.
(1)求橢圓C的方程
(2)若過點M(2,0)的引斜率為
的直線與橢圓C相交于兩點G、H,設P為橢圓C上一點,且滿足
(O為坐標原點),當
時,求實數
的取值范圍?
科目:高中數學 來源: 題型:解答題
已知定點![]()
與分別在
軸、
軸上的動點
滿足:
,動點
滿足
.
(1)求動點
的軌跡的方程;
(2)設過點
任作一直線與點
的軌跡交于
兩點,直線
與直線
分別交于點
(
為坐標原點);
(i)試判斷直線
與以
為直徑的圓的位置關系;
(ii)探究
是否為定值?并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓
經過點
,其左、右頂點分別是
、
,左、右焦點分別是
、
,
(異于
、
)是橢圓上的動點,連接
交直線
于
、
兩點,若
成等比數列.![]()
(1)求此橢圓的離心率;
(2)求證:以線段
為直徑的圓過點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點F和橢圓
的右焦點重合,直線
過點F交拋物線于A、B兩點.
(1)求拋物線C的方程;
(2)若直線
交y軸于點M,且
,m、n是實數,對于直線
,m+n是否為定值?
若是,求出m+n的值;否則,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的焦點在
軸上,離心率為
,對稱軸為坐標軸,且經過點
.
(1)求橢圓
的方程;
(2)直線
與橢圓
相交于
、
兩點,
為原點,在
、
上分別存在異于
點的點
、
,使得
在以
為直徑的圓外,求直線斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1:
,C2:
. 設點P的軌跡為
.
(1)求C的方程;
(2)設直線
與C交于A,B兩點.問k為何值時![]()
![]()
?此時
的值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓C:
=1(a>b>0)的離心率為
,其左焦點到點P(2,1)的距離為
.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.![]()
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.![]()
(1)求證:A、M、B三點的橫坐標成等差數列;
(2)設直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com